Laser Thermal Input Effects on Deep Penetration CO2 Laser Welding of Carbon Steel
Keywords:
Laser Thermal Input, CO2 Laser Welding of Carbon SteelAbstract
The present work brings forward a computational modeling of welding phenomena within an analytical framework. The aim is to study the effect of laser power and travel speed on the heat flow in keyhole laser welding and compare the experimental investigations with the theoretical model which was published formerly (ref.21,22). The problem is formulated and solved by approximating the laser beam as a point and a line heat source operating simultaneously. This concept produces weld profiles that have good qualitative agreement with the experiments. Mathematical model and computer program were constructed to solve two basic heat conduction equations for the moving point and line sources. The effect of coupling efficiency, thermal input and laser power loss on the welds parameters is presented.
Key words: laser welding, thermal input, coupling efficiency, penetration depth
Downloads
Downloads
Published
Issue
Section
License
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.