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Abstract 

         This paper presents and compares the 
performance of two Kalman filter schemes, the 
discrete extended Kalman filter (EKF) and 
unscented Kalman filter (UKF) for estimating the 
states (winding currents, rotor speed and rotor 
angular position) of two-phase Permanent 
Magnet Synchronous Motor (PMSM). 
Estimating the states of the system is performed 
by propagating the mean and covariance of the 
state distribution. For linear systems, the general 
recursive Kalman filter algorithm based on 
MMSE (minimum mean squared error) is the 
straightforward estimation technique to be 
implemented. For nonlinear systems, extended 
Kalman filter (EKF) is considered to be the best 
nonlinear estimator. The EKF is based on 
linearizing the state and output equations at 
every sampling instant. Therefore, this estimator 
requires continuously computation of the 
Jacobian matrix. The unscented Kalman filter 
(UKF) is based on implementation of the 
unscented transformation (UT) to the nonlinear 
state distribution (motor model). The UT uses the 
intuition that it is easier to approximate a 
probability distribution than it is to approximate 
an arbitrary nonlinear function or transformation. 
Apply this intuition to motor model, a set or 
cloud of points are generated around each state 
of motor model with specified sample mean and 
sample covariance. The nonlinear function 
(PMSM model) is applied to each of these points 
in turn to yield a transformed sample, and the 
predicted mean and covariance are calculated 
from the transformed sample. Based on predicted 
mean and covariance the UKF recursive 
algorithm can be developed. The performance 
comparisons are based on standard deviation 
estimation errors of both   

estimators and the time computation effort 
required execute the algorithms of both filters. 
The simulated results show that the UKF gives 
best estimates at motor low speed, while its 
estimation performance degrade at high motor 
speed. On the other hand, the EKF shows bad 
estimation characteristics at low frequency and it 

yields good estimates at high source frequency. 
However,, the EKF algorithm keeps lower time 
computation effort over wide range of rotor speed 
than that required to execute the UKF software for 
the same range of source frequency. The PMSM 
motor model and the algorithms of both filters are 
built in Matlab package using S-function capability 
and scalar control strategy are used to account for 
constant stator magnetizing flux.        

Keywords: Two-phase Permanent Magnet 
Synchronous Motor, Scalar control, EKF, UKF.  

Introduction: 
        In order to permit tractable algorithms for 
tracking and control applications, an approximate 
state estimate must be generated. The Kalman filter 
is a set of mathematical equations that provides an 
efficient computational (recursive) means to 
estimate the state of a process, in a way that 
minimizes the mean of the squared error. The filter 
is very powerful in several aspects: it supports 
estimations of past, present, and even future states, 
and it can do so even when the precise nature of the 
modeled system is unknown [1-3]. 
       However, the standard Kalman filter addresses 
the problem of estimating the state of a controlled 
process that is governed by a linear stochastic 
difference equation. But many of the processes to be 
estimated and (or) the measurement relationship to 
the process is non-linear. Therefore, for the standard 
Kalman filter to be applied to such nonlinear 
systems the nonlinear system is linearized first and 
then the recursive equations of the standard Kalman 
filter are applied for time update. The Kalman filter 
which tackles the estimation problem of linearized 
nonlinear process and linearizes about the current 
mean and covariance is referred linearized Kalman 
filter or alternatively extended Kalman filter (EKF) 
[3]. 
      Thus, the EKF is an estimation algorithm 
wherein linearizing the nonlinear system involves 
the calculation of Jacobians and substituting them 
for the linear transformation in the KF equations. 
However, the following major shortcomings have 
been reported for the EKF [4] 
(1) The EKF is based on Jacobian calculation. This 

calculation is sometimes of extremely difficult and 
error-prone process. 
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(3) Linearization is based on the Taylor series 
approximation, considering only the first two 
terms of the series and ignoring the other 
higher order terms. 

(2) Linearization can produce highly unstable 
filter performa-    nce if the time step intervals 
are not sufficiently small. 

(4) Sufficiently small time step intervals usually 
imply high computational overhead as the 
number of calculations demanded for the 
generation of the Jacobian and the predictions 
of state estimate and covariance are large 

      As the EKF totally depends on the 
linearization to propagate the mean and 
covariance, it is obvious that EKF would give 
bad estimates if any one of the above limitations 
is encountered. To overcome these limitations, 
the unscented transformation was derived which 
utilizes a more direct and simple approach to 
propagate the mean and covariance.  
     The main advantage of implementing 
unscented transformation on a nonlinear 
estimation problem is that it approximates the 
mean to third order, which is better than 
linearization, and it approximates the covariance 
to third order, which is the same as linearization. 
Therefore, loss of the higher-order terms can be 
avoided in the propagation of the state of the 
system by using the full nonlinear equations 
[3,4]. 
       Figure (1) illustrates the mean and 
covariance propagation in all three 
transformations. The mean in the EKF and UT 
are similar to that of the true nonlinear 
transformation. But, when covariance 
propagation is considered, the UT outperforms 
the EKF. And moreover there is no need of 
calculating any Jacobians in the unscented 
transformation algorithm. The order of 
computational effort is almost the same in both 
algorithms. When the computational effort is 
same in both cases, the unscented transformation 
is preferred over the EKF for the better accuracy 
[4].Thus, the unscented transformation is proved 
to be more accurate in propagating the mean and 
covariance when compared with the linearization 
method used in EKF [3,4]. 

   The objective of the work is to use the EKF 
and the UKF for estimating the states of a two-
phase permanent magnet synchronous motor and 
then comparisons have been made between their 
estimation performances.   
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Figure (1): Mean and Covariance propagation in 
(a) Actual nonlinear transformation, (b) 

Extended Kalman filter (first order linearization), 
(c) Unscented Transformation 

 

Development of Two-Phase PMSM State 
Space for Kalman Filter Estimators: 
      Figure (2) shows the schematic  cross section of 
two phase synchronous machine shows having a 
permanent magnet rotor and two identical stator 
windings a and b whose axes are in quadrature. The 
salient-pole rotor is revolving at synchronous speed 

rm , whose angular position is given by trmrm . 

The stator windings are connected to a balanced 
two-phase voltage source of frequency s .  

r

 

Figure (2) Schematic of 
two-phase  

salient-pole synchronous 
machine  

 

Using Kirchhoff s voltage law, on can obtain [5,6]  

dtdiru asassas

 

1 

  

dtdiru bsbssbs   

 

2

  

Here, asu and asu are the phase voltages in the 
stator windings as and bs; asi and asi are the phase 
currents in the stator windings; sr is the resistance 
of the stator windings, as

 

and as

 

are the stator 
flux linkages, which can be expressed as   
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  asmbsasbsasasasas iLiL       3 

 
bsmbsbsbsasbsasbs iLiL    
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where asasL and bsbsL are the self-inductances of 
the stator winding which are given in terms of 
leakage inductance lsL and magnetizing 
inductance mL as 

mlsbsbsasasss LLLLL        
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Since the stator windings are displaced by 90 
electrical degrees, hence, the mutual inductances 
between the stator windings are 0bsasasbs LL . 
  The flux linkages are periodic functions of the 
angular displacement (rotor position), and hence  
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Then, from Eq.(3) and (4), one can have  
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Therefore, one finds  

rmrmmassassas dtdiLiru cos
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Using Newton s second law              
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where mB is the of viscous friction coefficient 
that acts on the motor shaft and its load, J is the 
rotor moment of inertia and LT is the external 
load. The expression for the electromagnetic 
torque developed by permanent-magnet motors 
can be obtained by using the coenergy 
Then, one has  
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Augmenting the circuitry transients with the 
torsional-mechanical dynamics and accounting for 
uncertainties in load and noises that may corrupt 
input signal, the mathematical model of two-phase 
permanent-magnet motors can be written in the 
following form [6]:  
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where au

 

and bu

 

are noise terms due to errors in 

au and bu . 

 

is a noise term due to uncertainty in 
the load torque.  
      It is assumed that the measurements of the two 
winding currents may be performed by sense 
resistors. The measurements are distorted by 
measurement noises asi

 

and bsi , which are due to 

things like sense resistance uncertainty, electrical 
noise or quantization errors. Then, the noise 
corrupted measurements can be given by 

asas iiy1 ;       bsbs iiy2 

Letting, asix1 , bsix2 , rmx3 , and  rmx4 , 
the aforementioned dynamic equations can be 
simplified as  

ssasasssmsss LuuxxLxLrx )(cos)()( 4311
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To apply the EKF and UKF to the motor, it is 
necessary to define the states of the system in matrix 
form. The state vector x and the measurement vector 
y

 

can be defined, respectively, as

 

T
rmrmbsas iix , 

T
bsas iiy .  

Then, the system equation can be described by  

x = f(x,u)+ LB LT +w          
y= h x+v 

 

18 
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the process noise vector w and measurement 
noise vector v  are given by 
w T

Lssbsssas JTLuLu 0 ,  

v  T
bsas uu           

If a discrete EKF is used and the data fed to UKF 
is in discrete form, then a discretizing form of 
system model of Eq.(17) would be required. The 
result of discretization gives the discrete version 
of Eq.(3) [7],    
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where T is the step size and the superscript T 
indicates a matrix transpose. 
      Let s also suppose that it is possible to 
measure the motor winding currents, and we 
want to use the EKF and UKF to estimate 
machine states. The connection of estimator 
(EKF or UKF) with motor is shown in Figure 
(3).  
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Figure (3) The connection of the estimator with 
motor model

. 
     To estimate motor states, the estimator has to 
receive noise-corrupted phase voltages ( asas uu ) 
and ( bsbs uu ), and, also, it should measure (noisy) 
phase currents, 1y and 2y . Then based on special 
algorithms, the estimator would estimate the states 
of phases currents ( asi , bsi ), rotor speed rm and 

rotor angular position rm .    
       
Scalar Control of PMSM  

    Constant volt per hertz control in an open loop 
control represents the most common control strategy 
for asynchronous motors. Using this technique for 
synchronous motors with permanent magnets offers 
a big advantage of sensorless control [8,9].  
      To maintain the stator flux constant at its 
nominal value in the base speed range, the voltage-
to-frequency ratio is kept constant, hence the name 
V/f control. If the ratio is different from the nominal 
one, the motor will become overexcited or under-
excited. The first case happens when the frequency 
value is lower than the nominal one and the voltage 
is kept constant or if the voltage is higher than that 
of the constant ratio V/f. The over-excitation 
condition means that the magnetizing flux is higher 
than its nominal value. An increase of the 
magnetizing flux leads to a rise of the magnetizing 
current. In this case the hysteresis and eddy current 
losses are not negligible. The second case represents 
under-excitation. The motor becomes under-excited 
because the voltage is kept constant and the value of 
stator frequency is higher than the nominal one 
[8,9]. Such a control strategy can be represented by 
the block diagram illustrated in Fig.(4). The Kalman 
estimators have been inncluded to estimate the 
motor states. As shown in the figure, the estimators 
need for their work a direct measurement of voltages 
at the output of voltage source inverter. The 
estimators, also, requires sensing of current  through 
the stator phases.  
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Figure (4)  Block diagram of Volt per Hertz 
control of PMSM 

.  

EKF Algorithm for Motor State 
Estimation: 
      In any Kalman-based filter, both a model of 
the process and a model measurement are 
required,   

kkkk wuxfx ),(1
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where kw is the process noise and kv is the 
measurement noise. kx is called the state of the 
system. ku is a known input to the system 
(called the control signal) and ky is the 
measured output. 
      If either the process or measurement equation 
is nonlinear, this violates the linear assumption 
of the standard Kalman filter. The extended 
Kalman filter (EKF) is an ad hoc technique to 
provide to use the standard Kalman filter on non-
linear process or measurement models resulting 
in sub-optimal estimates. The measurement 
model and process model are linearized about the 
mean and covariance (the current operating 
point) at each iteration and the standard Kalman 
filter is applied to the linearized models. The 
linearization has been approximated in the 
extended Kalman filter using a first order Taylor 
expansion. To accomplish this, the Jacobian 
matrix of both the process model and the 
measurement model need to be calculated [1, 2, 
10]. 

      In case of two-phase PMSM, one can easily 
deduce from Eq.(18) that the process equation is 
nonlinear and the measurement is linear. Therefore, 
calculation of Jacobian matrix for measurement is 
trivial, while for process is nontrivial. In order to use 
an EKF, one need to find the derivatives of 
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After linearizing the nonlinear model of 
synchronous motor, one can execute the following 
the standard Kalman filter equations [1, 2, 10]: 
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where kx

 

is the estimate of kx , kK is called the 
Kalman gain, kQ is the covariance of the process 
noise ( kw ) and kR is  the covariance of  the 
measurement noise ( kv ).   

The unscented Transformation        

     The problem of predicting the future state or 
observation of the system can be expressed in the 
following form. Suppose that x

 

is n-dimensional 
vector random variable with mean x and covariance 

xxP . A second m-dimensional random vector 
variable y

 

is related to x

 

through the nonlinear 
transformation )(xfy . One would like to 

calculate the mean y and covariance yyP of y

 

[3, 

11]. 
      The unscented transformation is a new, novel 
method for calculating the statistics of a random 
variable which undergoes a nonlinear 
transformation. It is found on the intuition that it is 
easier to approximate a Gaussian distribution than it 
is to approximate an arbitrary nonlinear function of 
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transformation. The approach is illustrated in 
Fig.(5). A set of points (or sigma points) are 
chosen so that their sample mean and sample 
covariance are x and xxP . The nonlinear 
function is applied to each point in turn to yield a 
cloud of transformed points and y and yyP are 

the statistics of the transformed points.   

         

 

Figure (5) The principle of the unscented 
transformation 

 

     Given an n-dimensional Gauassian 
distribution having covariance P, one can 
generate a set of )(nO points having the same 
sample covariance from the columns (or rows) of 

the matrices Pn

 

(the positive and negative 

roots). This sets of points is zero mean, but if the 
original distribution has mean x to each of the 
points yields a symmetric set of 2n points having 
the desired mean and covariance. Because the set 
is symmetric its odd central moments are zero, so 
its first three moments are the same as the 
original Gaussian distribution. The 
transformation procedure can be summarized as 
[3,11]:   
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or columns of the matrices xxPn )( . 

This set is zero mean with covariance xxP .  
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The transformed set of sigma points are evaluated 

for each of the 0-2n points by   
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3. The predicted mean and covariance are computed 

as  
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where )( oo fy . Each of the sigma vectors is 
assigned with a weight. These weights are calculated 
by the following equations:   

)(nWW c
o

m
o      28 

 

)(21 nWW c
i

m
i    ni 2,,1

 

29 

 

In the present work, the value of 

 

is set to zero.   

The unscented Kalman Filter:        

       For nonlinear systems, the hybrid extended 
Kalman filter (EKF) is considered to be the best 
nonlinear estimator. However, as discussed 
previously, the EKF has some limitations as it is 
based on the linearization of the nonlinear system 
and also on some other approximations. The 
unscented Kalman filter is an alternative to the EKF 
which has the implementation of unscented 
transformation of the nonlinear state distribution and 
then applying the recursive Kalman filter algorithm 
for the time update and measurement update for the 
nonlinearly transformed state distribution [4,11]. 
      The unscented Kalman filter algorithm can be 
divided in to three sections. The first part is the 
initialization of the state estimate and state 
covariance of the nonlinear system. The second part 
is applying the UT to the state distribution and 
calculating the a priori state estimate and a priori 
state covariance. The third part is performing the 
measurement update equations and calculating the 
Kalman gain, state estimate and state error 
covariance.  
      Let us again consider the discrete time nonlinear 
system of the motor model represented by Eq.(19) 
and given by:         
         kkkkk wtuxfx ),,(1 

         kkkk vtxhy ),( 

where kw  and kv are additive process and 
measurement noise, with zero mean and covariances  
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of kQ and  kR . The unscented Kalman filter 
algorithm can be listed as follows [4, 11-14]:     

1. Initialization 
The UKF is initialized with the initial estimate 
and estimation error covariance as in the EKF. 
             

)( 00 xEx
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where E(.) denotes expectation function, 0x and 

0P denotes posteriori of estimate and its 

corresponding covariance matrix, respectively.   

2. Sigma point selection:  

      As seen previously in the unscented 
transformation, a set of sigma points and their 
corresponding weights are calculated around the 
initial estimate according to Eq.(22) and (23)   
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3. Time Update  

       The system gets updated from k-1 to k time 

step. All the sigma points i
kx 1

 

are propagated 

through the nonlinear function f(.) and h(.) and 

then the corresponding nonlinear sigma points i
kx   

are obtained. 
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Using the i
kx

 

vectors and also the weights c
iW 

and m
iW , one has to perform the following steps. 

(a) The a priori state estimate kx at time kt is 
calculated as             
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b) The a priori estimation error covariance is 
calculated. However, one should add 1kQ to the 

end of the equation to take the process noise into 
account:   
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Similarly using the i

ky

 
vectors (measurements from 

sigma points) ky

 

is calculated as  
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4. Measurement Update  

    Using the calculated a priori state estimate, a 
priori estimation error covariance and measurement 
estimate, the following terms are calculated. 
a) Computation the covariance of the predicted 

measurement  
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b) Estimation the cross covariance between kx

 

and 
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c) The measurement update of the state estimate and 
estimate error covariance is performed using the 
general Kalman filter equations by calculating the 
Kalman gain kK 
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Figure (6) shows the flow chart which summarizes 
the UKF algorithm. It is worth to mention that the 
flow chart is based on setting the scaling parameter 

 

equal to zero.   

Results  

        The state estimation process of two-phase 
PMSM has been modeled and implemented using 
Simulink shown in Fig.(7). To account for machine 
parameter variations, the machine model has been 
coded in m-file and added to the Simulink using S-
function block. Moreover, to implement an online 
estimation, the blocks of EKF and UKF estimators 
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are also added to Simulink models using the S-
function capability. S-functions use a special 
calling method that enables users to interact with 
Simulink equation solvers. The algorithms of the 
estimators and the model are coded in m-files 
with the same names as their corresponding S-
function blocks. During simulation of a model, at 
each simulation stage, Simulink calls the m-files 
of process and estimators and, also, it calls the 
appropriate methods for each S-function block in 
the model and then it would yield the outputs of 
S-function blocks immediately after each 
sampling instant. The form of an S-function can 
accommodate continuous and discrete systems.   
    The V/F strategy has been implemented in 

Simulink portrait of Fig.(7) using a look-up table 
block. The look-up table holds the 
proportionality relationship between the 
frequency and the phase voltage amplitude to 
give constant flux operation. The simulation time 
base is combined with the required phase voltage 
amplitude and frequency to give two balanced 
phase voltages.      
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Figure (6) Flow chart of performing UKF 
algorithm 

 

     As indicated in the Fig.(7), the S-function block of 
the machine model receive the quadrature phase 
voltages and exerted load to yield the true estimates of 
phase currents, rotor angular speed and position. On 

the other hand, the EKF and UKF estimators take the 
stator phase voltages at machine input and the current 
measurements from the S-function block output of the 
machine model and give the estimates of the machine 
variables.    

Figure (7) SIMULINK Modeling of Motor State 
Estimation System

 

     The noise contamination of measurements and 
states has been simulated inside m-files of 
estimators' algorithms. It will be assumed that the 
state, measurement and load uncertainty noises are 
white noises with zero-mean. Their standard 
deviations have been assigned in Table (1). Table (1) 
also lists the values of parameters and coefficients of 
the system. The initial conditions of the system 
states and the error covariance matrix are given as 

  
T

x 00000 ,  00 xx

 

1000

0100

0010

0001

0P 

      Since the estimation process deals with a discrete 
form of estimators, a fixed-step type with 2ms has 
been selected in the simulation parameters and 2 
seconds stop-time has been adopted for most 
simulations.                    
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Table (1) System coefficients and parameters 

value Parameter 

1.9 

 
Winding resistance  ( sR ) 

0.003 H Winding inductance ( ssL ) 

0.1 Weber Flux constant of motor ( m ) 

0.00018 

N.m. 2s 
Moment of inertia  ( J ) 

0.001 N.m.s 
Coefficient of viscous friction 

( F ) 

1 Hz Input frequency (f) 

0.1 Amp 
Standard deviation of 

measurement noises ( asi , bsi ) 

0.001 volt 
Standard deviation of phase 
voltage noises ( asu , bsu ) 

0.05 
2secrad 

Standard deviation of  noise 
due to torque disturbance 

( LT ) 

  

      Figures (8)-(10) show the true and estimated 
states (winding currents, rotor angular velocity 
and position of synchronous machine) when the 
machine is operated at 1 Hz source frequency. 
One can easily see that both the EKF and UKF 
could estimate all the states of the motor. It is 
clear that the estimates resulting from the UKF 
estimator are closer to the true states than those 
obtained from EKF.       
        The performance of both estimators can be 
assessed via estimation error portraits. Figure 
(11) shows the standard deviation of state 
estimation errors (for all states) obtained from 
both filters and at rotor speed of 6.2832 rad/sec. 
The average RMS estimation errors of the EKF 
and UKF (six sigma points since we chose W(0) 
= 0), are calculated and listed in Table (2). It is 
clear from the figures and Table (2) that the UKF 
well-performs for estimation of all states 
(winding currents, velocity and angular position). 
It is seen from Table (2) that the UKF 
consistently gives estimates that are one or two 
orders of magnitude better than the EKF.  

Table (2) Average of RMS of the state 
estimation Errors 

State EKF UKF 
Widing A Current (A) 1.3313 0.2418 
Widing B Current (A) 1.4901 0.2726 

Rotor speed (rad/s) 23.1698 5.5201 
Rotor position (rad) 2.7265 0.6492 

  

       It is interesting to examine the performance 
of both estimator at different frequency and to 
check if the UKF could keep its superiority over 
a wide range of speed and frequency. The new 
suggested source frequency has been chosen to 

be 10 times the previous one. Figure (12) shows the 
RMS value of estimation errors for different states 
with this new frequency. It is evident from the figure 
that the UKF degrade at this frequency and the EKF 
shows better estimation performance than UKF. 
However, at this frequency the EKF shows good 
characteristics in terms of rotor angular speed and  
position. The performances of both estimators, in 
case of current state, are evenly equal as shown in 
the figure.                     

Figure (8) True and estimated states of phase current 
(at source frequency 1Hz). 
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Figure (9) True and estimated states of rotor 
speed  

(at source frequency 1Hz.) 

                                                  

Figure (10) True and estimated states of rotor 
angular position (at source frequency 1Hz.) 

 

     The actual and estimate states of rotor speed 
variable have been simulated at rotor speed of 10 Hz 
source frequency (62.832 rad/sec.) as shown in 
Fig.(13) . It is evident from the figure that the speed 
response estimate due to EKF is closer to actual state 
than the corresponding estimate obtained from EKF     
However, the average of RMS value of the 
estimation error resulting from both filters for each 
state and over source frequency range 1-10Hz has 
been calculated and illustrated in Fig.s (14)-(16). 
One can see that the assessment of both filter 
performances depends on the state and the value of 
fed frequency. For the case of rotor speed state, the 
performance of UKF improves at low frequency and 
degrades at high frequency, while the performance 
of EKF degrade at low frequency and then it shows 
constant characteristics at higher frequency. On the 
other hand, for the case of current state, the average 
of RMS value resulting from EKF is higher than that 
obtained from UKF at low frequency. The averages 
of estimation errors generated from both estimators 
are approximated equal at frequency of 10 Hz 
(62.832 rad/sec.). This result is evident in Fig.(12), 
where the average of RMS value of the current 
estimation error is approximately equal. Therefore, 
one can conclude that the performance of UKF 
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outperforms the EKF at low frequency and gives 
bad estimation characteristics at high frequency. 
Meanwhile, the EKF estimator generates bad 
estimates at low frequency but it keeps its 
characteristics and shows better performance at 
higher frequency.                                    

Figure (11) RMS values of different state 
estimation errors   

(at source frequency 1Hz.) 

 
      The P matrix quantifies the uncertainty in the 
state estimates. In other words, the P matrix give us 
an idea or an indication of how accurate our 
estimates are. Figure (17) gives the behavior of the 
sum of diagonal elements (trace) of matrix P for 
both EK and UK filters at source frequency 1 Hz. 
The figure shows that the UKF has more confidant 
with its estimates than that the EKF has. This is 
evident from the difference of magnitudes between 
covariance matrices in both filters. The high values 
of P in EKF gives an indication that its estimates is 
of low certainty and then with large errors. 
However, the trace of P matrix with both filters 
would later lower and the confidence of producing 
an accurate estimate would rise.                                  

Figure (12) RMS values of different state estimation 
errors 

(at source frequency 1Hz.) 
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      It is of importance to assess the performance 
of both estimators in terms of computation effort 
of their software algorithms. The Matlab 
functions "tic" and "toc" work together to 
measure elapsed time. The sequence of these 
commands can be employed to measure the 
amount of time the MATLAB software that takes 
to complete one or more operations and displays 
the time in seconds. The calculation effort of 
EKF and UKF can be assessed using Fig.(18). At 
each program iteration, the effective time 
required to calculate the steps of each filter 
algorithm is computed. It is clear from Fig.(19) 
that the average time required to execute the 
UKF algorithm over all the simulation time is 
higher than that with EKF algorithm. However, 
the simulation is implemented with 6.2832  (1 
Hz)  rotor angular speed. It is necessary to see 
the execution time taken by both filters at source 
frequency of 10 Hz  or  at rotor speed of 62.832 
rd/sec. The result shown in Fig.(18) assures that 
the EKF still  has a lower execution time than its 
counterpart.     

  

Figure (13) RMS values of different state 
estimation errors   

(at source frequency 1Hz.) 

        

Figure (14) Mean of RMS value of the current 
estimation error over a wide range of  frequencies (1-

10Hz.) 

 

    In Fig.(20), the average of execution time over 
simulation run has been calculated at each rotor 
angular speed up to 62.832 rd/sec . One can 
conclude from the figure that EKF always has a 
lower execution time over the prescribed range of 
speed than that time required to execute the UKF 
algorithm.     

Figure (15) Mean of RMS value of the current 
estimation error over a wide range of  frequencies (1-

10Hz.) 
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Figure (16) Mean of RMS value of the current 
estimation error over a wide range of  frequencies 

(1-10Hz.) 

 

Conclusion: 

  

The simulated results shows that the 
unscented filter can give greatly improved 
estimation performance compared with the 
extended Kalman filter at low rotor speed. 
However, its performance would degrade 
gradually as the rotor speed has been 
increased.  

  

On the other hand, the EKF gives bad state 
estimates at low rotor speed. However it keeps 
its estimation characteristics and yield better 
performance than its opponent at higher speed.   

  

Results showed that UKF has lower values of 
covariance matrix trace than that with EKF. 
This gives an indication that UKF is more 
confidant with its estimates than the EKF.   

  

The EKF requires the computation of 
Jacobians (partial derivative matrices), while 
the UKF does not use Jacobians. For systems 
with analytic process and measurement 
equtions, it is easy to compute Jacobians. But 
some systems are not given in analytical form 
and it is numerically difficult to compute 
Jacobians.  

  

For the considered system specifically, the 
average execution time required to calculate 
the UKF algorithm (for each iteration) is 
higher than that required to calculate EKF 
algorithm.                        

Figure (17) Behavior of covariance matrices P of both 
EKF and UKF with 1Hz source frequency.  

  

     

Figure (18) Calculation effort for both estimators at 1Hz 
source frequency  
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Figure (19) Calculation effort for both 
estimators at  

10 Hz source frequency  

   

Figure (20) Mean of execution time over 
source  frequency range 1-10Hz  
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