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Abstract

This paper presents and compares the
performance of two Kalman filter schemes, the
discrete extended Kaman filter (EKF) and
unscented Kalman filter (UKF) for estimating the
states (winding currents, rotor speed and rotor
angular position) of two-phase Permanent
Magnet  Synchronous  Motor  (PMSM).
Estimating the states of the system is performed
by propagating the mean and covariance of the
state distribution. For linear systems, the genera
recursive Kalman filter algorithm based on
MMSE (minimum mean squared error) is the
straightforward estimation technique to be
implemented. For nonlinear systems, extended
Kaman filter (EKF) is considered to be the best
nonlinear estimator. The EKF is based on
linearizing the state and output equations at
every sampling instant. Therefore, this estimator
requires continuously computation of the
Jacobian matrix. The unscented Kalman filter
(UKF) is based on implementation of the
unscented transformation (UT) to the nonlinear
state distribution (motor model). The UT uses the
intuition that it is easier to approximate a
probability distribution than it is to approximate
an arbitrary nonlinear function or transformation.
Apply this intuition to motor model, a set or
cloud of points are generated around each state
of motor model with specified sample mean and
sample covariance. The nonlinear function
(PMSM model) is applied to each of these points
in turn to yield a transformed sample, and the
predicted mean and covariance are calculated
from the transformed sample. Based on predicted
mean and covariance the UKF recursive
algorithm can be developed. The performance
comparisons are based on standard deviation
estimation errors of both

estimators and the time computation effort
required execute the agorithms of both filters.
The simulated results show that the UKF gives
best estimates at motor low speed, while its
estimation performance degrade at high motor
speed. On the other hand, the EKF shows bad
estimation characteristics at low frequency and it
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yields good estimates at high source freguency.
However,, the EKF algorithm keeps lower time
computation effort over wide range of rotor speed
than that required to execute the UKF software for
the same range of source frequency. The PMSM
motor model and the algorithms of both filters are
built in Matlab package using S-function capability
and scalar control strategy are used to account for
constant stator magnetizing flux.

Keywords: Two-phase Permanent Magnet
Synchronous Motor, Scalar control, EKF, UKF.

Introduction:

In order to permit tractable algorithms for
tracking and control applications, an approximate
state estimate must be generated. The Kalman filter
is a set of mathematical equations that provides an
efficient computational (recursive) means to
estimate the state of a process, in a way that
minimizes the mean of the squared error. The filter
is very powerful in several aspects. it supports
estimations of past, present, and even future states,
and it can do so even when the precise nature of the
modeled system is unknown [1-3].

However, the standard Kalman filter addresses
the problem of estimating the state of a controlled
process that is governed by a linear stochastic
difference equation. But many of the processes to be
estimated and (or) the measurement relationship to
the process is non-linear. Therefore, for the standard
Kaman filter to be applied to such nonlinear
systems the nonlinear system is linearized first and
then the recursive equations of the standard Kalman
filter are applied for time update. The Kalman filter
which tackles the estimation problem of linearized
nonlinear process and linearizes about the current
mean and covariance is referred linearized Kaman
filter or alternatively extended Kalman filter (EKF)
[3].

Thus, the EKF is an estimation agorithm
wherein linearizing the nonlinear system involves
the calculation of Jacobians and substituting them
for the linear transformation in the KF equations.
However, the following maor shortcomings have
been reported for the EKF [4]

(1) The EKF is based on Jacobian calculation. This
calculation is sometimes of extremely difficult and
€ror-prone process.
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(3) Linearization is based on the Taylor series
approximation, considering only the first two
terms of the series and ignoring the other
higher order terms.

(2) Linearization can produce highly unstable
filter performa-  nceif the time step intervals
are not sufficiently small.

(4) sufficiently small time step intervals usually
imply high computational overhead as the
number of calculations demanded for the
generation of the Jacobian and the predictions
of state estimate and covariance are large

As the EKF totally depends on the
linearization to propagate the mean and
covariance, it is obvious that EKF would give
bad estimates if any one of the above limitations
is encountered. To overcome these limitations,
the unscented transformation was derived which
utilizes a more direct and simple approach to
propagate the mean and covariance.

The main advantage of implementing
unscented transformation on a nonlinear
estimation problem is that it approximates the
mean to third order, which is better than
linearization, and it approximates the covariance
to third order, which is the same as linearization.
Therefore, loss of the higher-order terms can be
avoided in the propagation of the state of the
system by using the full nonlinear equations
[3,4].

Figure (1) illustrates the mean and
covariance  propagation in  al  three
transformations. The mean in the EKF and UT
are similar to that of the true nonlinear
transformation. But, when covariance
propagation is considered, the UT outperforms
the EKF. And moreover there is no need of
calculating any Jacobians in the unscented
transformation  agorithm.  The order of
computational effort is almost the same in both
algorithms. When the computational effort is
same in both cases, the unscented transformation
is preferred over the EKF for the better accuracy
[4].Thus, the unscented transformation is proved
to be more accurate in propagating the mean and
covariance when compared with the linearization
method used in EKF[3,4].

The objective of the work is to use the EKF
and the UKF for estimating the states of a two-
phase permanent magnet synchronous motor and
then comparisons have been made between their
estimation performances.
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Figure (1): Mean and Covariance propagation in
(a) Actua nonlinear transformation, (b)
Extended Kalman filter (first order linearization),
(c) Unscented Transformation

Development of Two-Phase PMSM State

Spacefor Kalman Filter Estimators:
Figure (2) shows the schematic cross section of
two phase synchronous machine shows having a
permanent magnet rotor and two identical stator
windings a and b whose axes are in quadrature. The
salient-pole rotor is revolving at synchronous speed
orm , Whose angular positionis given by 6rm=ormt .
The stator windings are connected to a balanced
two-phase voltage source of frequency ws.

Figure (2) Schematic of
two-phase
salient-pole synchronous
machine

Using Kirchhoff’s voltage law, on can obtain [5,6]

| Uas = I'sias + das/dt |1 |

| Ubszrsibs+dl//bs/dt | 2|

Here, u;s and uys are the phase voltages in the
stator windings as and bs; izs and iss are the phase
currents in the stator windings; rs is the resistance
of the stator windings, was and y,s are the stator
flux linkages, which can be expressed as
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| Was = Lasasias +

Lasbsibs +¥asm

|3 ]

+ Lpss Tos T ¥ bem

4

oW _ Pym

To =—C
© " 96m

(las COSHrm + |bs S n Qrm)

15

Wbs = was ias

where Lasas and Lpgs are the self-inductances of

the stator winding which are given in terms of
leakage inductance Lsand magnetizing

inductance Ly as
[5 |

Since the stator windings are displaced by 90
electrical degrees, hence, the mutual inductances
between the stator windings are Lagns = Lpsas =0 .

The flux linkages are periodic functions of the
angular displacement (rotor position), and hence

|6 |

| Wbsm = —/m COS(6rm) | 7 |

| Lss = Lasas = Lbshs = Lis+ Lm

| Wasm =WmSin(frm)

Then, from Eq.(3) and (4), one can have

Was = Lssias +mSin(6rm) | 8 |

Wbs = Lssibs —m COS(Grm) | 9 |

Therefore, one finds

[ s = rsias + Les dia/dt +y/m @rmcosorm | 10 |

Ups = rsips + Lss dibs/dt—l//m OrmSiNGrm | 11 |

Using Newton’s second law
d26;m
Te—Bmorm-TL = ‘J_Z
dt
we have

_da)rm Zl(Te —Bmorm —TL) 12

da J

d6rm 13

ot =®Orm

where By, is the of viscous friction coefficient
that acts on the motor shaft and itsload, J isthe
rotor moment of inertia and T_ is the externd
load. The expression for the electromagnetic
torque developed by permanent-magnet motors
can be obtained by using the coenergy

Then, one has

Augmenting the circuitry transients with the
torsional-mechanical dynamics and accounting for
uncertainties in load and noises that may corrupt
input signal, the mathematical model of two-phase
permanent-magnet motors can be written in the
following form [6]:

Glas _ _ Ts i VM 08O+ —— (Uns + Alias)
dip r 4 l_ 10
S S ; m 1
—_— =DM SINOrm + Ups +Au
dt Lss bs Lss " " Lss (too )

dorm  Pym

. L. B, 1
(ias COSOrm +ibs SINOrm) —merm —F(TL +ATL)

dt 2J
d6rm —w
ot rm

where Au, and Au, are noise terms due to errorsin
Ua and up. Aa isanoiseterm due to uncertainty in
the load torque.

It is assumed that the measurements of the two
winding currents may be performed by sense
resistors. The measurements are distorted by
measurement Noises Aias and Aips, Which are due to
things like sense resistance uncertainty, electrical
noise or quantization errors. Then, the noise
corrupted measurements can be given by

Y1 =las+Alas; Y2 =lips + Aips
Letting, xi =ias, X2=ibs, X3=orm, ad X4 =6m,
the aforementioned dynamic equations can be
simplified as

%1 =—(rsfLss) X1 — (m/Lss) X3COSX4 + (Uas + AUas)/ Lss
X2 = —(rs/ Lss) X2 + (l//m/ Lss) X3 SinX4 + (Ups+ AUbs)/ Lss
=Pyt 2) xcagHPy2) %si -8 ) % —T/ I-AT/J

X4 =X3

17

V1 =X+ Algs
Y2 = X2 + Aips

To apply the EKF and UKF to the motor, it is
necessary to define the states of the system in matrix
form. The state vector x and the measurement vector
y can be defined, respectively, as

S T . qT
Xz[las lbs @rm ‘9rm] ) y:[|as |bs]
Then, the system equation can be described by

N&';(Lsi;ﬂssi@wmiassi Q) Vi COH,) | 14

X=f(x,u)+ B T_+w }

y= hx+v 18
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where Noise
(-rs /L§) X1 —(Wm [Lss) X3 COS X 4+ Uas /Lss

Load uncertainty
noise

ATL

Phase A
voltage

(-rs /Lss) X2 +(Wm/Lg) X3 SN X 4+ Ups [Lss u
(wm [23) X1 cos x4 +(Bym/2J) X2 Sin X 4—(Bm /J) X

f(x,u)=
Synchronous
Motor Model

Angular position

Phase B current

Rotor speed
Orm

Orm

BL=[0 0 -T./3 of
the process noise vector w and measurement
noise vector v are given by

W=[AUas/Lss AUps/Lss —AT /I O],

vV = [AUas Aubs]T

If adiscrete EKF isused and the data fed to UKF
is in discrete form, then a discretizing form of
system model of Eq.(17) would be required. The
result of discretization gives the discrete version

of Eq.(3) [7],

X1 = T (X, Uk ) + Wk
Vi = h(x) + i } £
where

X f.(% )
f(Xk,Uk)= XZk fZ(Xk’uk)

+
X || Fa(X o)
X | [ Fa(X:Uo)

fL(X 40U ) = ~(1e/Le) Xy + (W[ L) Xy COS X[V

fo(X Uy ) =

X uj N ° bs
3 b A Phase B
voltage iae as
+

Actual states

Phase A current

. Measurement ——>|
Noise Alpg
Noise
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(EKF or UKF)
Measurement

TTTT o=

AR
Orm Orm lbs ige
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Figure (3) The connection of the estimator with
motor model

—(re/Lg) %o + (/L) Xg, COS X4k+u—@k/“3§{1

To estimate motor states, the estimator has to
receive noise-corrupted phase voltages (uas +Auas)
and (ups +Aups ), and, also, it should measure (noisy)
phase currents, y1 and y,. Then based on special
agorithms, the estimator would estimate the states
of phases currents (ias,ips), rotor speed &mand

rotor angular position & .

Scalar Control of PM SM

Constant volt per hertz control in an open loop
control represents the most common control strategy
onous motors. Using this technique for

YnchfdhbusSmotors with permanent magnets offers
a b|g advantage of sensorless control [8,9].
tain the stator flux constant at its
nominal value in the base speed range, the voltage-

£(X,U,) =(P1//W/2J) X c09<4k+(P1//W/2J) X, SN, ngljjt%?y ratio is kept constant, hence the name

f,(X0Uy) =X
h(x,,u,)= [Xlk XZk]T’

vk =[Au,  Aug ],
Wk:[AuasJLss Aug/ly —AT /I OP

where T is the step size and the superscript T
indicates a matrix transpose.

Let’s also suppose that it is possible to
measure the motor winding currents, and we
want to use the EKF and UKF to estimate
machine states. The connection of estimator
(EKF or UKF) with motor is shown in Figure

Q).
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If the ratio is different from the nominal
one, the motor will become overexcited or under-
excited. The first case happens when the frequency
value is lower than the nomina one and the voltage
is kept constant or if the voltage is higher than that
of the constant ratio V/f. The over-excitation
condition means that the magnetizing flux is higher
than its nomina value. An increase of the
magnetizing flux leads to a rise of the magnetizing
current. In this case the hysteresis and eddy current
losses are not negligible. The second case represents
under-excitation. The motor becomes under-excited
because the voltage is kept constant and the value of
stator frequency is higher than the nominal one
[8,9]. Such a control strategy can be represented by
the block diagram illustrated in Fig.(4). The Kalman
estimators have been inncluded to estimate the
motor states. As shown in the figure, the estimators
need for their work a direct measurement of voltages
at the output of voltage source inverter. The
estimators, also, requires sensing of current through
the stator phases.
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Figure (4) Block diagram of Volt per Hertz
control of PMSM

EKF Algorithm for Motor State

Estimation:

In any Kalman-based filter, both a model of
the process and a mode measurement are
required,

X = T (X, u) +w, |20

Yk =h(xi) + vk
where wg is the process noise and v is the
measurement noise. xx is called the state of the
system. ux is a known input to the system
(caled the control signal) and yx is the
measured output.

If either the process or measurement equation
is nonlinear, this violates the linear assumption
of the standard Kaman filter. The extended
Kaman filter (EKF) is an ad hoc technique to
provide to use the standard Kalman filter on non-
linear process or measurement models resulting
in sub-optimal estimates. The measurement
model and process model are linearized about the
mean and covariance (the current operating
point) at each iteration and the standard Kalman
filter is applied to the linearized models. The
linearization has been approximated in the
extended Kalman filter using a first order Taylor
expansion. To accomplish this, the Jacobian
matrix of both the process mode and the
measurement model need to be calculated [1, 2,
10].
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In case of two-phase PMSM, one can easily
deduce from Eq.(18) that the process equation is
nonlinear and the measurement is linear. Therefore,
calculation of Jacobian matrix for measurement is
trivial, while for processis nontrivial. In order to use
an EKF, one need to find the derivatives of
f(xc,ux) and h(xx) with respect to xc at each time
step and evaluated at the current state estimate, i.e

. a1 &2 a3 a4

A= /(%K) = OfF (MoUk) _ |az az azs a
2 a1 ap a; axu

a1 A42 A43 A4

o\ oh(k) [1 0 0 0
Cre=h0 = éxk){o 10 o}

where

a11=—Ts/Lss, @2=0, a3=—(ym/Lss) cosXak,
a14 = (Wm/Lss) Xaksin¥ak , 821=0, ax =-rs/Lss
a23 = (Wm/Lss) SiNKak , @24 = (Wm/Lss) Xak COSKak
a1 = (Pym/2J) coskak , as2 =(Pwm/[2J) sin X,
a4 = (Pym/2J)[ %ok coSRak — Kk SN Rak]

agz3=— Bm/-]

an =0, ag=0, ag3=1, asu =0

After linearizing the nonlinear model of
synchronous motor, one can execute the following
the standard Kalman filter equations[1, 2, 10]:

Kk:RCI(CkH(CI+R;<Tl

%1 = F(%ou) + Kic [y -htk)] |22

Fer1= Ac (I - Kk Ci) R Af +Qx

where % is the estimate of x, Kk is called the
Kaman gain, Q is the covariance of the process
noise (w) and R¢ is the covariance of the
measurement noise (v ).

The unscented Transfor mation

The problem of predicting the future state or
observation of the system can be expressed in the
following form. Suppose that x is n-dimensional
vector random variable with mean X and covariance
Pw. A second m-dimensional random vector
variable y is related to x through the nonlinear
transformation y=f(x). One would like to
calculate the mean y and covariance Py, of y [3,
11].

The unscented transformation is a new, novel
method for calculating the statistics of a random
variadble  which  undergoes a  nonlinear
transformation. It is found on the intuition that it is
easier to approximate a Gaussian distribution than it
is to approximate an arbitrary nonlinear function of
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transformation. The approach is illustrated in
Fig.(5). A set of points (or sigma points) are
chosen so that their sample mean and sample
covariance are X and Py . The nonlinear
function is applied to each point in turnto yield a
cloud of transformed points and y and Py, are

the statistics of the transformed points.

Figure (5) The principle of the unscented
transformation

Given an n-dimensional Gauassian
distribution having covariance P, one can
generate a set of O(n) points having the same
sample covariance from the columns (or rows) of
the matrices i‘/n P (the positive and negative

roots). This sets of pointsis zero mean, but if the
origina distribution has mean X to each of the
points yields a symmetric set of 2n points having
the desired mean and covariance. Because the set
is symmetric its odd central moments are zero, so
its first three moments are the same as the
origina Gaussian distribution. The
transformation procedure can be summarized as
[3,11]:

1. Compute the set & of 2n pointsfrom the rows

or columns of the matrices i‘/(n+x) Pxx -
This set is zero mean with covariance Py .
o« 2n rows or columns from

i‘/(n+ &) Pyx

where ke R .
2.Compute a set of points with the same

covariance, but with mean X, by trandating
each of the points as

Yo=X [22]

23

Zi=X=* (‘/(n+ K ) Pyx )I

which assures that

2n
Poc= ) Weln -z -xI" | 24
i=1
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The transformed set of sigma points are evauated
for each of the 0-2n points by

[ vi=t) [25 |

3.The predicted mean and covariance are computed
as

2n

¥=1W"Yo +ZWJ“ yi 26

i=1

n
pyy:[vvg[yo—vnyo—vf +Zwr[y| Iy —VJT} 27
i=1

wherey, = f(x0). Each of the sigma vectors is

assigned with aweight. These weights are calculated
by the following equations:

W' =W§ = x/(n+x) 28

Wim =Wi° =1/2(n+x) i=1...,2n 29

In the present work, the value of « is set to zero.

Theunscented Kalman Filter:

For nonlinear systems, the hybrid extended
Kaman filter (EKF) is considered to be the best
nonlinear estimator. However, as discussed
previously, the EKF has some limitations as it is
based on the linearization of the nonlinear system
and also on some other approximations. The
unscented Kalman filter is an aternative to the EKF
which has the implementation of unscented
transformation of the nonlinear state distribution and
then applying the recursive Kalman filter algorithm
for the time update and measurement update for the
nonlinearly transformed state distribution [4,11].

The unscented Kalman filter algorithm can be
divided in to three sections. The first part is the
initialization of the state estimate and state
covariance of the nonlinear system. The second part
is applying the UT to the state distribution and
calculating the a priori state estimate and a priori
state covariance. The third part is performing the
measurement update equations and calculating the
Kaman gain, state estimate and state error
covariance.

Let us again consider the discrete time nonlinear
system of the motor model represented by Eq.(19)
and given by:

X1 = (X, Uk, t) + Wi

Yk = h(Xq, tk) + vk
where  wy and v are additive process and
measurement noise, with zero mean and covariances
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of Q« and Ry . The unscented Kalman filter
algorithm can be listed asfollows[4, 11-14]:

1. Initialization
The UKF is initialized with the initia estimate
and estimation error covariance asin the EKF.

%3 =E(xo) | 30

P = E[(Xo— %3 )(Xo—%&)T] | 31

where E(.) denotes expectation function, xJ and

Py denotes posteriori of estimate and its
corresponding covariance matrix, respectively.

2. Sigma point selection:

As seen previoudy in the unscented
transformation, a set of sigma points and their
corresponding weights are calculated around the
initial estimate according to Eq.(22) and (23)

oi _ ot |:0, 32

)"(L_1=>"(;_1+(‘/nPJ_1) i=1....n 33

end of the equation to take the process noise into
account:

2n
P =Zwi° (Rl - %i)(RL - %i)T + Qe | 38
i=0

Similarly using the QL vectors (measurements from
sigmapoints) ik iscalculated as

2n
Jic = Zwim i 39
i=0

4. M easurement Update

Using the calculated a priori state estimate, a
priori estimation error covariance and measurement
estimate, the following terms are calcul ated.

a) Computation the covariance of the predicted
measurement

2n
Py =Zwi° Gl - 9Ok - )T + Re | 40

i=0

i=n+1...,2n

ol o+ +
Xg—1 = X1~ (J nPk—l)

3. Time Update

The system gets updated from k-1 to k time
step. All the sigma points %} _, are propagated
through the nonlinear function f(.) and h(.) and
then the corresponding nonlinear sigma points xL
are obtained.

Rlo=f(&_Luot) |32

36

9i = h(Xk,t)

Using the % vectors and also the weights W<
and W;"™, one has to perform the following steps.

(@) Theapriori state estimate Xy " at time tx is
caculated as

2n
i = E wm g |37
i=0

b) The a priori estimation error covariance is
calculated. However, one should add Qx_; to the
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b)Estimation the cross covariance between % and
Ji as

2n
Pay = ZW‘C (K- %Gk - 907 |42
i=0

¢) The measurement update of the state estimate and
estimate error covariance is performed using the
general Kaman filter equations by calculating the
Kaman gain Ky

Kk = Py Py

42

X = Xic + Kic(Y — ¥i)

P& = A — Kk Py KJ

Figure (6) shows the flow chart which summarizes
the UKF algorithm. It is worth to mention that the
flow chart is based on setting the scaling parameter
x equal to zero.

Results

The state estimation process of two-phase
PMSM has been modeled and implemented using
Simulink shown in Fig.(7). To account for machine
parameter variations, the machine model has been
coded in m-file and added to the Simulink using S-
function block. Moreover, to implement an online
estimation, the blocks of EKF and UKF estimators

Comparison of Two Estimators 52



are also added to Simulink models using the S
function capability. S-functions use a special
calling method that enables users to interact with
Simulink equation solvers. The algorithms of the
estimators and the model are coded in m-files
with the same names as their corresponding S
function blocks. During simulation of amodel, at
each simulation stage, Simulink calls the m-files
of process and estimators and, also, it calls the
appropriate methods for each S-function block in
the model and then it would yield the outputs of
Sfunction blocks immediately after each
sampling instant. The form of an S-function can
accommodate continuous and discrete systems.

The V/F strategy has been implemented in
Simulink portrait of Fig.(7) using alook-up table
block. The look-up table holds the
proportionality ~ relationship  between  the
frequency and the phase voltage amplitude to
give constant flux operation. The simulation time
base is combined with the required phase voltage
amplitude and frequency to give two balanced
phase voltages.

Initialization
% =E(xo)
P =E{(x0-4) (o5

Sigma Generation

0 -\ |
) =R
}

State updating

O (]

—

Predicting measurement Propagation from k -1 tok
i =hb) || 8 =000

ii

Averaging of Predicted | | Taking the average to find priori
measurement
12 o 180
=L K= zh
e 2

i=1

(i)

900 gl 9 x| (a0

The covariance of the predicted Estimation of the cross covariance
Ry measurement is estimated between

L LI (N PO | S I
nia nia

v I
The measurement update of the state estimate |
using the normal Kalman filter equations: Xk
Ki=Py Py
=%+ K e =91
R =P -Ki By K]

Yk —p

Figure (6) Flow chart of performing UKF
algorithm

As indicated in the Fig.(7), the S-function block of
the machine model receive the quadrature phase
voltages and exerted load to yield the true estimates of
phase currents, rotor angular speed and position. On

NUCEJ Vol.14 No.1

the other hand, the EKF and UKF estimators teke the
stator phase voltages at machine input and the current
measurements from the S-function block output of the
machine model and give the estimates of the machine
variables.

B

il

S Function?

C

1

3

theta_true

Figure (7) SIMULINK Modeling of Motor State
Estimation System

The noise contamination of measurements and
states has been simulated inside m-files of
estimators' algorithms. It will be assumed that the
state, measurement and load uncertainty noises are
white noises with zero-mean. Their standard
deviations have been assigned in Table (1). Table (1)
aso lists the values of parameters and coefficients of
the system. The initial conditions of the system
states and the error covariance matrix are given as
100

10
0 01
00O

Since the estimation process deals with a discrete
form of estimators, a fixed-step type with 2ms has
been selected in the simulation parameters and 2
seconds stop-time has been adopted for most
simulations.

x0=[0 0 0 o]T, %5 =%0 Py =

= O O O

Humaidi 53



Table (1) System coefficients and parameters

Parameter value
Winding resistance (Rs) 19 Q
Winding inductance ( Lss) 0.003H
Flux constant of motor (m) 0.1 Weber
) ) 0.00018
Moment of inertia (J) 2
N.m.s
Coefficient of viscousfriction 0.001 N.m.s
(F)
Input frequency (f) 1Hz
Standard deviation of 01A
measurement Noises (Aias , Aips) AMP
Standard deviation of phase
. 0.001 volt
voltage noises ( Augs , AUps)
Standard deviation of noise 0.05
due to torque disturbance rad /sec2
(ATL)

be 10 times the previous one. Figure (12) shows the
RMS value of estimation errors for different states
with this new frequency. It is evident from the figure
that the UKF degrade at this frequency and the EKF
shows better estimation performance than UKF.
However, at this frequency the EKF shows good
characteristics in terms of rotor angular speed and
position. The performances of both estimators, in
case of current state, are evenly equal as shown in

the figure.

Figures (8)-(10) show the true and estimated
states (winding currents, rotor angular velocity
and position of synchronous machine) when the
machine is operated at 1 Hz source frequency.
One can easily see that both the EKF and UKF
could estimate all the states of the motor. It is
clear that the estimates resulting from the UKF
estimator are closer to the true states than those
obtained from EKF.

The performance of both estimators can be
assessed via estimation error portraits. Figure
(11) shows the standard deviation of state
estimation errors (for al states) obtained from
both filters and at rotor speed of 6.2832 rad/sec.
The average RMS estimation errors of the EKF
and UKF (six sigma points since we chose W(0)
= 0), are calculated and listed in Table (2). It is
clear from the figures and Table (2) that the UKF
well-performs for estimation of al states
(winding currents, velocity and angular position).
It is seen from Table (2) that the UKF
consistently gives estimates that are one or two
orders of magnitude better than the EKF.
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Figure (8) True and estimated states of phase current
(at source frequency 1Hz).

Table (2) Average of RMS of the state
estimation Errors

State EKF UKF
Widing A Current (A) | 1.3313 | 0.2418
Widing B Current (A) | 1.4901 | 0.2726
Rotor speed (rad/s) | 23.1698 | 5.5201
Rotor position (rad) 2.7265 | 0.6492

It is interesting to examine the performance
of both estimator at different frequency and to
check if the UKF could keep its superiority over
a wide range of speed and frequency. The new
suggested source frequency has been chosen to
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Figure (10) True and estimated states of rotor
angular position (at source frequency 1Hz.)

The actual and estimate states of rotor speed
variable have been simulated at rotor speed of 10 Hz
source frequency (62.832 rad/sec.) as shown in
Fig.(13) . It is evident from the figure that the speed
response estimate due to EKF is closer to actua state
than the corresponding estimate obtained from EKF
However, the average of RMS vaue of the
estimation error resulting from both filters for each
state and over source frequency range 1-10Hz has
been calculated and illustrated in Fig.s (14)-(16).
One can see that the assessment of both filter
performances depends on the state and the value of
fed frequency. For the case of rotor speed state, the
performance of UKF improves at low frequency and
degrades at high frequency, while the performance
of EKF degrade at low frequency and then it shows
constant characteristics at higher frequency. On the
other hand, for the case of current state, the average
of RMS value resulting from EKF is higher than that
obtained from UKF at low frequency. The averages
of estimation errors generated from both estimators
are approximated equal at frequency of 10 Hz
(62.832 rad/sec.). This result is evident in Fig.(12),
where the average of RMS value of the current
estimation error is approximately equal. Therefore,
one can conclude that the performance of UKF
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outperforms the EKF at low frequency and gives
bad estimation characteristics at high frequency.
Meanwhile, the EKF estimator generates bad
estimates at low frequency but it keeps its
characteristics and shows better performance at
higher frequency.
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Figure (11) RMS values of different state
estimation errors
(at source frequency 1Hz.)

The P matrix quantifies the uncertainty in the
state estimates. In other words, the P matrix give us
an idea or an indication of how accurate our
estimates are. Figure (17) gives the behavior of the
sum of diagonal elements (trace) of matrix P for
both EK and UK filters at source frequency 1 Hz.
The figure shows that the UKF has more confidant
with its estimates than that the EKF has. This is
evident from the difference of magnitudes between
covariance matrices in both filters. The high values
of P in EKF gives an indication that its estimates is
of low certainty and then with large errors.
However, the trace of P matrix with both filters
would later lower and the confidence of producing
an accurate estimate would rise.
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Figure (12) RMS values of different state estimation
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It is of importance to assess the performance
of both estimators in terms of computation effort
of their software algorithms. The Matlab
functions "tic" and "toc" work together to
measure elapsed time. The sequence of these
commands can be employed to measure the
amount of time the MATLAB software that takes
to complete one or more operations and displays
the time in seconds. The calculation effort of
EKF and UKF can be assessed using Fig.(18). At
each program iteration, the effective time
required to calculate the steps of each filter
algorithm is computed. It is clear from Fig.(19)
that the average time required to execute the
UKF algorithm over al the simulation time is
higher than that with EKF agorithm. However,
the simulation is implemented with 6.2832 (1
Hz) rotor angular speed. It is necessary to see
the execution time taken by both filters at source
frequency of 10 Hz or at rotor speed of 62.832
rd/sec. The result shown in Fig.(18) assures that
the EKF still has alower execution time than its
counterpart.
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Figure (14) Mean of RMS value of the current
estimation error over awide range of frequencies (1-
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In Fig.(20), the average of execution time over
simulation run has been calculated at each rotor
angular speed up to 62.832 rd/sec . One can
conclude from the figure that EKF always has a
lower execution time over the prescribed range of
speed than that time required to execute the UKF
agorithm.
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Figure (15) Mean of RM S value of the current
estimation error over awide range of frequencies (1-
10Hz.)

Figure (13) RMS values of different state
estimation errors
(at source frequency 1Hz.)
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Figure (16) Mean of RMS value of the current
estimation error over awide range of frequencies
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Conclusion:

U The simulated results shows that the
unscented filter can give greatly improved
estimation performance compared with the
extended Kaman filter at low rotor speed.
However, its performance would degrade
gradually as the rotor speed has been
increased.

O On the other hand, the EKF gives bad state
estimates at low rotor speed. However it keeps
its estimation characteristics and yield better
performance than its opponent at higher speed.

O Results showed that UKF has lower values of
covariance matrix trace than that with EKF.
This gives an indication that UKF is more
confidant with its estimates than the EKF.

O The EKF requires the computation of
Jacobians (partial derivative matrices), while
the UKF does not use Jacobians. For systems
with analytic process and measurement
equtions, it is easy to compute Jacobians. But
some systems are not given in analytical form
and it is numerically difficult to compute
Jacobians.

O For the considered system specificaly, the
average execution time required to calculate
the UKF agorithm (for each iteration) is
higher than that required to calculate EKF
algorithm.

Unscented Kalman Filter
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Figure (17) Behavior of covariance matrices P of both
EKF and UKF with 1Hz source frequency.
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Figure (18) Calculation effort for both estimators at 1Hz
source frequency
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