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Abstract

The basic approach taken here works
by finding predictable higher-order statistics of
“natural”  images within a multi-scale
decomposition, and then showing that
embedded messages dlter these statistics. A
Fisher linear discriminant analysis is then used
to discriminate between untouched and
adulterated images. Detection  system
suggested here is used to detect seven systems
these are: hiding in LSB, hiding in palette,
hiding in DCT simple level security, and
hiding in wavelet smple level security. In
addition,  highly-secret  systems  were
constructed, i.e. systems that integrate
Cryptography with Steganography in both
domains, DCT and Wavelet.  Moreover,
system of hiding in multiwavelet was used
with cryptography.

Keywor ds: Steganography , Cryptography ,
Steganalytic .

1. Introduction

Steganography  deals  with  hiding
messages such that potential monitors don’t even
know that a message is being sent. It is different
from cryptography whereit is known that a secret
message is being sent [1]. The term
Steganography itself means “covered writing”.

Farid proposed a universa blind
steganalytic detection method based on higher-
order statistics of natural images [2]. Results
for detecting steganographic messages being
embedded with various publicly available
steganographic programs (in both domain
spatial and frequency) showed an astonishing
performance of his method

Techniques for information hiding have
become increasingly more sophisticated and
widespread. With high-resolution digital images as
cariers, detecting hidden messages has become
consderably more difficult. This paper describes
an approach to detect hidden messages in images.
The gpproach uses a wavdet-like decompostion
to build higher-order gtatistical models of naturd
images. A Fisher linear discriminant analysis
(FLDA) [2] is then used to discriminate between
untouched (origind) and adulterated (stego)
images. With digita images as carriers, detecting
the presence of hidden messages posses significant
chalenges. Although the presence of embedded
messages is often imperceptible to the human eye,
it may nevertheess disturb the datistics of an
image. Previous approaches to detect such
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deviations [3,4,5,6] typicdly examine first-order
datistical digtributions of intensity or transform
coefficients (e.g., discrete cosine transform, DCT).
The drawback of this andyss is tha smple
counter-measures that match first-order steistics
are likely foil detection. In contrast, the approach
taken here rdies on building higher-order
datisticad models for natura images [7,8,9] and
looking for deviations from these models. Through
alarge number of naturd images, it is proved that
there exigs drong higher-order  statistical
regularities within a waveet-like decomposition.
The embedding of a message sgnificantly alters
these statistics and thus becomes detectable.

2. The Detection Algorithm

The detection scheme can be
separated in two parts. In the first part, a set of
statistics is extracted, called the feature vector,
for each investigated image. In the second part,
a classification algorithm is used to separate
original images from stego images by means of
their feature vectors. Classification algorithm
can be divided into classifier training and
classifier testing for training images and
testing images respectively.

In order to obtain the feature vector f of
a certain image, a multi-level discrete two-
dimensional (2-D) wavelet decomposition of that
image is performed. Therefore, the image is
decomposed in the approximation, vertical,
horizontal, and diagonal subband by appropriate
2-D filtering and downsampling. The
approximation subband is  repeatedly
decomposed in this way. The estimates for the
first four (normalized) moments, namely the
mean, variance, skewness, and kurtosis of the
vertica, horizontal, and diagonal subbands for
scaes i = 1,........,n1 form 4*3*(n-1)
eements of f. Mean, variance, skewness, and
kurtosis of a random varidble x are defined
respectively by :-

1= E{x} 1
0x’= E{(x - ux)’ | 2
() :
] :

where E{} denotes the expectation operator.
These moments are estimated using space
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averaging and thus implying inherently
stationarity and ergodicity of the subband
coefficients. Obvioudly, this holds only to
some degree for subband coefficients of
natural images. The remaining elements of f
are derived from the error statistics of an
optimal linear predictor. Feature vector for
each training images (cover and stego) is
collected to create two matrices, one of them is
called “stego” and the other is called “cover”
(length of feature vector is the number of
columns and number of images is the number
of rows). These matrices are the input into
classifier training. Moreover, two matrices will
be created by collecting feature vectors for
each testing images (cover and stego). The first
matrix is called “stego” and the other is called
“cover” (whereas feature vector length is the
number of columns. The number of images
will represent the number of rows). These
matrices are the input into classifier testing.
The whole detected process is illustrated in
figure (1).

2.1 The Wavelet Decomposition

The decompodtion of images using bas's functions
that are locdlized in spatid position, orientation and
scde (eg., wavdes) has been proven to be
extremdy ussful in a range of applications (eg.,
image compression, image coding, noise removd,
and texture synthess). One reason is that such
decompositions exhibit gatistica regulaities that
can be exploited (eg., [10])

Theinitid am hereisto use the wavelet transform
in the partitioning of the image into subbands in
which each subband has certain information. The
decomposition employed here is based on separable
quadrature mirror filters (QMFs).

After extracting the coefficients of the
wavelet, we will arrange them on the form of
vector asillustrated in figure (2). Thisvector is
named z. Algorithm 1 is the summary of the
wavelet decomposition stage.

|hi|vi][di[h2[v2][d2|h3|v3]|d3|h4|v4|d4] a4

Figure (2) Vector (2) form of wavelet coefficients

Algorithml:Wavelet Decomposition

Input: Cover or Stego
Output: Wavelet coefficient, vector z

Stepl: Select the type of images (whether
cover or stego).

Step2: Input bases function (Haar function).

Step 3: Apply 4-level wavelet decomposition
to image.

Step 4. Convert coefficient matricesinto a
vector as shown in figure (2).

Step 5: End

(Input image)

Wavel et
decomposition

\ 4

by using QM F
( Stego or Cover S

)

mean, variance, kurtosis and skewness at each

(Coefficient statistics)

orientation (V,H,D) and at each levels

eature

| |
(coefficient statisticsbased on theerrors) | ( vector
mean, variance, kurtosisand skewnessat | \A L/
each orientation (V,H,D) and at each

levels

Input:- two training
matrices
(Cover and Stego)

Stage(1) Collect wavelet
statistics

Compute FLD discriminator and
project training matrices into _,\ Training setin
maximal eigenval ue-eigenvector dimensiona FLD

and extract the threshold _V

—ll nput:- two testing matrices Stage(2) Classifier-Training

(Cover and Stego)

Testing using threshold ‘

b Decis

Stage(3) Classifier-
Testing

Figure (1) The proposed detection-system
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2.2 Image statistics

Given this image decomposition, the
statisticall model is composed of the mean,
variance, skewness and kurtosis of the subband
coefficients at each orientation and at scales
i=1,......... , N-1. These statistics characterize
the basic coefficient distributions. The second
set of statistics is based on the errors in an
optimal linear predictor of coefficient
magnitude. As described in [10], the subband
coefficients are correlated to their spatial,
orientation and scale neighbors. For the
purposes of illustration, consider first avertical
band, Vi(x)y), at scalei. A linear predictor for
the magnitude of these coefficients in a subset
of al possible neighbors * is given by:

Vi(X,y) = lei(x'17y) + W2Vi(X+ 11y)
+ W3Vi (X!y-l) + W4Vi (X1y+ 1)
+ Ws Vi1 (X2,y/2) + WeDi(X,y)
+ WyDj. 1(X/2,y/2)

where wy denotes scalar weighting
values*. This linear relationship is expressed
more compactly in matrix form as:

V =QWw 6

Where W is the column vector W =

(Wy,.......wy)". The vector V contains the

coefficient magnitudes of Vi(x,y) strung out
into a column vector, and the columns of the
matrix Q contain the neighboring coefficient
magnitudes as specified in Equation (5) strung
out into column vectors. The coefficients are
determined by minimizing the quadratic error

function E(W) = [V -QW]2 This error
function is minimized analyticaly by
differentiating with respect to W :

dE(W)dW = 2Q" [V -QW], setting the
result to zero, and solving for W , then:

W =(QQ'Q'V 7

Thelog error in the linear predictor isthen given by:

E =logy(V ) —log(IQ W |) 8

From this error, the additional statistics
are collected namely the mean, variance,
skewness, and kurtosis. This process is repested
for each verticd subband at scaei =1,......... , N-
1, where at each scale anew linear predictor is

* The particular choice of spatial, orientation and scale
neighbors was motivated by the observations of [10] and
modified to include non-casual neighbors.

Viea(X/2, y/2) is used in order to avoid interpoletion, the
unsampled vertica subband (at postion (xy)) a scde i+1 is
used. Hi.1(x/2,y/2) and D;..1(x/2,y/2) are cal cul ated the same way.
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estimated. A similar process is repeated for the
horizontal and diagonal subbands. The linear
predictor for the horizonta subbands is of the
form:

Hi(xy) = waHi(x-1,y) + woH;(x+1,y)
+ WaHi(X,y-1) + wyHi(x,y+1)
+ WsHi. 1(X/2,y/2) + wgDi(X,y)
+ W7D, 1(X/2,y/2)

And for the diagonal subbands:

Di(x,y) = wiDi(x-1,y)+ w,Dj(x+ 1Y)
+ W3Di(x,y-1)+ wyDj(x,y+1)

+ WD (x2y2) + weHi(xy) | 2©

+ W7Vi (va)

The same error metric, equation (8),
and error statistics computed for the vertical
subbands, are computed for the horizontal and
diagonal bands, for a tota of 12(n-1) error
statistics. Combining these statistics with the
12(n-1) coefficient statistics yields a total of
24(n-1) statistics that form a feature vector
which is used to discriminate between images
that contain hidden messages and those that do
not, where the input of the classification
contains two matrices one matrix whose rows
contain (no-stego) image feature vectors and
the other matrix whose rows contain (stego)
image feature vectors, where number of
columns of matrices is the number of
coefficient statistics 72(if n=4) in the feature
vector and the number of rows of matrices is
the number of the images [2]. Algorithm 2 is
the summary of the above descriptions:-

Algorithm2:Collect statisticsfrom
sub-bands

Input: Vector z
Output: Feature vector f.

Stepl: Evaluating coefficients of vector
z (mean, variance, kurtosis, and
skewness) at each level and at
each orientation by using
equations (1), (2), (3), and (4).

Step2: Using linear predictor equation at
each level and at each orientation
to find predicted coefficients for
vertical, horizontal, and diagona
by using eguations (5), (9), and
(10) respectively.

Step3: The result of the difference
between the actual and predicted
coefficients is the error as in
equation (8) that is used to find
(mean, variance, kurtosis, and
skewness) at each level and at
each orientation.

Step 4: Through collecting statistics
found in actual coefficients as
well as statistics found in error,
feature vector f isfound.

Step 5 : End
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2.3 Classification

The 500 images chosen in this paper
will be divided into training image and testing
image where training image takes 400 images
and testing takes 100 images. From the
measured statistics of a training set of images
with and without hidden messages, the goal is
to determine whether a novel (test) image
contains a message. To this end, Fisher Linear
Discriminant analysis (FLD), a class specific
method for pattern recognition, is employed.
For simplicity atwo —class FLD is described.

Denoted column vectors X, i = 1,
......... , N, and yj, j =1 ., Ny as

exemplars from each of two classes from the
training set, and where N,=N,= N is the
number of images training, x refers to cover
training images and y refers to stego training
images. The within-class means are defined as:

dimensionality of the data and preserves
discriminability. Once the FLD projection axis
is determined from the training set, a novel
exemplar, Z, from the testing set is classified
by first projecting onto the same subspace : -

projtestingA = ZiTé 17

projtestingB = ZjTé 18

13 - 13
A== % ad i,==>y, |1
N N <

i=1

The between-class mean is defined as:

i i,
2

i= 12

In the simplest case, the class to
which this exemplar belongs is determined via
a simple threshold. In the case of a two-class
FLD, we are guaranteed to be able to project
onto a one-dimensional subspace (i.e., there
will be at most one non-zero eigenvalue). The
training exemplar for stego and cover
projected in FLD dimension will be converted
into Receiver Operator Characteristic (ROC)
plane, where in this plane the detection rate
ranges from 50% (no detection rate) to 100%
(full detection rate) therefore we will convert
the detection rate ranging from (50-100)%
represented by (y) to (0-100)% represented by
(x) according to the equation:

X =2y-100 19

The within-class scatter matrix is defined as[59]:

Sw= MM, + My M,T 13

Where, the i column of matrix M, contains
the zero-meaned i exemplar given by
X, — i, Similarly, the j™ column of matrix

M, contains y, — i . The between-class
scatter matrix is defined as:

S$=N(fy =), — )

U 14
+ N (R, — ), — )

In ROC, intersection point among
curves (stego and cover), the threshold value is
created with false positive rate (i.e., a no-stego
image incorrectly classified as a stego image).
The threshold value will be used in testing
exemplar into decision rate detection. A two-
class FLD is employed here to classify images
as either containing or not containing a hidden
message. Each image is characterized by its
feature vector as described in the previous
section. Algorithms 3 and 4 are the summary
of the above descriptions:-

Algorithm3:Classifier- training

Finaly, let € be the eigenvector corresponding to
maxima eigenvaue of § and S, When the

training exemplars X; and Y; are projected onto
the one-dimensiona linear subspace defined by

€, the within-class scatter is minimized and the
between-class scatter is maximized.

projtrainingA = T(iTé 15

Input: Two matrices (stego and no-stego)
whose columns are coefficients of
feature vector. The rows represent the
number of the training images.

Output: Stego and no-stego images are
projected into two dimensional axes.
The vertical axis corresponds to FLD
whereas the  horizontal axis
corresponds to the number of the
images (cover and stego). And
finding threshold value.

projtrainingB = ijé 16

For the purpose of pattern
recognition, such a projection is clearly
desirable as it simultaneously reduces the
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Stepl: Evauate “within-class means” and
“between-class means” by using
equations (11) and (12) respectively.

Step2: Evauate “within-class scatter matrix”
(Sw) and “between-class scatter
matrix” (S,) by using equations (13)
and (14) respectively.

Step 3: Find maximal real eign-value and eign-
vector for two square matrix (S,,Sy)
in step 2 to create real vector (€) .

Step 4: Project training images (two matrices)
on maxima eign-value and eign-
vector (€) (i.e., project on FLD axis)
using equations (15) and (16).

Step 5: Find threshold value from ROC curve
by the intersection between two
curves (stego and cover).

Step 6 : End

Algorithmé4:Classifier- testing

Input: Two matrices (stego and no-stego)
whose columns are coefficients of
feature vector. The rows represent the
number of the testing images

Output: The decision

Stepl: Project testing images (two matrices) on
maximal eign-value and eign-vector
(€) (i.e, project on FLD axis) using
equations (17) and (18).

Step2: Take threshold from classifier training
for discrimination.

Step3: Decide detection rate with false positive
rate with respect to threshold chosen for
testing images.

Step 4. End

3. Results

Statistics from 500 such images are
collected as follows. Each image is first
converted from RGB to gray-scale using the
well known equation (gray = 0.299R + 0.587G
+ 0.114B). A four-level, three-orientation
QMF pyramid is constructed for each image,
from which a 72-length feature vector of
coefficient and error statistics is collected.

Messages are embedded into TIFF
images (256x256) pixels using the following
stego systems:-
Hidden in LSB.
Hidden in palette.
Hidden in DCT simple level security.
Hidden in DCT high level security.
Hidden in wavelet simple level security.
Hidden in wavelet high level security.
Hidden in multiwavelet high level security.

In these seven systems, images

carrier, of fixed size (256 x 256) pixels and
256 gray scale, was used in an effort to conceal
the secret image in sizes ranging from
(16 x 16) pixelsto (128 x 128) pixels and 256
gray scade. Algorithms software are

NoghkhwdpE
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implemented with MATLAB 7.0 programming
language with processor hyper- threading
technology (2.8 G Hz), full cash.

In each case, a message consists of a
n x n pixels (128 = n = 16) is used. The
image fidelity criteria results for each method
are illustrated in table (1) by taking maximum
and minimum values of the tests (PSNR, and
conditional entropy) from 500 images. The
PSNR and conditional entropy are given by:

PSNR =10 log,,
(L-1) 20
1

* N ii[lz(r,C)— |l(r,C)]2

M r=1 c=1

Where

N: height of the two images (because the two
images must be of the same size).

M: width of the two images.

r and c¢: row and column numbers.

L: is the number of the gray scale level in the
two images.

I4(r,c): isthe original image.

I5(r,c): isthe modified image.

1= 3P, ()log, D

H(14/1,) = I)log, —— 21

=i 2P|2(|)

Where

F’I1 :The probability distribution of the
original image.P,

P'Z :The probability distribution of the
modified image different from zero.
These probabilities are measured as

n, (i
&(i):—'ln() 22
n (i
P,()= 'ZT() 23
Here
n, () :The number of pixels in the i gray

level of the original image.

n, (1) :The number of pixels in the i gray
level of the modified image.
n: Total number of pixelsin oneimage.

After the message is embedded into the
cover image, the same transformation,
decomposition, and collection of statistics as
described above is performed.

The two-class FLD is trained on a
random subset of 400 images and then tested on
the remaining 100 images. Figure (3) shows the
results for the training and testing set for hidden
in palette system. In this figure the ‘o' mark
corresponds to "stego” images and the X' mark
corresponds to the "no-stego" images. The
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vertical axis corresponds to the value of an
image feature vector after projecting onto the
FLD projection axis. Results from the training
set are shown to the left of the vertical line, and
results from the testing set are shown to the
right. The threshold for classification
(horizontal line) is selected using the ROC
curves shown in the lower part of figure (3).

In this part, the solid line corresponds to the
percent of correctly classified no-stego images,
and the dashed line corresponds to the percent of
correctly classified stego images. The
classification threshold is selected to be the point
at which these curves cross.

Table (1) Imagefidelity criteriaresultsfor seven
different stego systems

Classification(FLD axis)

=}

I

@
L

L L L I L I L L
El 100 150 200 250 300 30 400 450 00

Number of images

=)
=

percent

L L L L L
025 02 015 0.1 005 0 005

Classification(FLD axis)threshold

Figure (3) Hidden in palette system results
with message size 64x64

Table (2) shows the results for one
independent trial, where on this trial a random
subset of 400 images are used for training, and
the remaining 100 images are used for testing.
The reported values, from the testing set,
correspond to the accuracy of correctly
classifying a stego image (detection rate), and
of incorrectly classifying no-stego images
(false positive rate corresponding into training
images). This table shows the detection rate
after using equation (19) and false positive
rate, for message sizes ranging from 128x128
to 16x16 pixels. As the message size
decreases, detection rates fall correspondingly.
For the first method (Hidden in LSB), the
message size ranges from 76x107 to 16x16
pixels. The detection rate decreases from
51.49% to 3.97% with false positive rate
increase from 22.2% to 45.4% respectively.
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o PSNR (dB) Conditional Entropy
% Message . )
E Max. Min. Max. Min.
76x 107 | 55.903 | 50.128 | 0.5826451775 | 0.0710516777
g g | 64x04 | soars | 52084 | 03260474465 | 0.0505502820
S — | 32x32 | 6469 | 50213 | 0.0842670577 | 0.0152504754
16x16 | 70.648 | 65.233 | 0.0267745764 | 0.00593609534
e, |Loexoes | 48962 | 32368 | 00371858633 | 0.0124377246
g% 32x32 | 59548 | 38.060 | 00191361379 | 0.0037734868
% | 16x16 | 66146 | 43785 | 0.0091581409 | 0.0000675245
.o |7ex107|308254| 85156 | 0.0004843013 | 00000000000
= % 2] eaxo4 | 308254 86.753 | 0.0003081491 | 0.0000000000
55 5 g 32x 32 | 308254 90.275 | 0.0001761099 | 0.0000000000
"% [ 1ox 16 | 308.254 | 30825 | 00000000000 | 0.0000000000
e 128x 128] 54556 | 51.006 | 0.5468044240 | 0.0791300172
== g 2] eaxea [ 61118 | s6.659 | 0.1543143602 | 0.0234056254
555 g 32x32 | 68378 | 63304 | 0.0384226128 | 0.0065009716
2= 1 16x16 | @027 | 6a970 | 00084240821 | 00012763883
£ |76%107 | 308254 308254 | 00000000000 | 00000000000
; 5 % g. 64x 64 | 308.254 | 308.254 | 0.0000000000 | ©0.0000000000
ggg 8l 32x 32 | 308.254| 308254 | 0.0000000000 | 0.0000000000
=7 I 16x16 | 308254 | 308254 | 0.0000000000 | 0.0000000000
- 128x 128] 53.860 | 51874 | 03653087940 | 0.0615007431
g E g § 6ax64 | 60.008 | 57.774 | 0.1074916099 | 0.0199130670
g % Ea Bl 32x32 | 66.605 | 64.168 | 00282253649 | 0.0059439879
= 16x16 | 73600 | 69.375 | 0.0097217816 | 0.0022011758
5T |128x128) 52156 | 50146 | 04788003280 | 0.0764680730
; % E 2] 646 | 58432 | 56.005 | 01478213894 | 0.0249569136
S % g g 32x32 | 64.985 | 61883 | 0.0450274677 | 0.0080573365
- E S | 16x16 | 72230 | 67860 | 0.0133058543 | 0.0030819208
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For the second method (hidden in
palette), the message size ranges from (64x64)
to (16x16) pixels. The detection rate decreases
from 87.13% to 13.87% with false positive rate
from 1.63% to 43.4% respectively.

For the third method (hidden in DCT
simple level security), the range of message
sizes is the same as of LSB method. The
detection rate decreases from 7.93% to 1%
with false positive rate from 47.2% to 49.6%
respectively.

For the fourth method (hidden in
DCT with high level security), the message
size range is the same as of LSB method. In
this method, the detection rate decreases from
49.51% to 4.96% with false positive rate from
24.1% to 48.7% respectively.

For the fifth method (hidden in
wavelet with simple level security) the
message size range is the same as of LSB
method. The detection rate decreases from
9.91% to 1% with false positive rate from
45.4% to 49.4% respectively.

For the sixth method (hidden in
wavelet with high level security) the message
size range is the same as of LSB method. The
detection rate decreases from 45.55% to 1.99%
with false positive rate from 24.2% to 47.9%
respectively.

For the seventh method (hidden in
multiwvavelet with high level security) the
message size range is the same as of LSB
method. The detection rate decreases from
55.45% to 1% with false positive rate from
20.9% to 44.3% respectively.
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Table (2) Classification accuracy for seven

different stego systems
False
Dete- positive
i 0,
Embedding Message ction rate (%)
rate | Correspon
(%) dinginto
stego
76 x 107 | 51.49 22.2
Hidden in 64x 64 | 4258 274
LSB 32x32 | 18.82 39.7
16 x 16 3.97 454
Hidden i 64x64 | 87.13 1.63
idden in
palette 32x32 | 36.64 27.4
16x 16 | 13.87 43.3
Hidden in 76 x 107 7.93 47.2
DCT with 64 x 64 4,96 42
simple[evel 32x32 | 1.00 48.8
security 16x 16 | 1.00 49.6
Hiddenin |128x128] 49.51 24.1
DCT with 64x64 | 26.74 37.8
high Ie_vel 32x32 7.93 451
security 16x16 | 4.96 48.7
Hiddenin L76x107 | 9.91 45.4
Pwavel et 64 x 64 2.98 47.3
with simp_le 32x32 ] 199 47.6
level security | 16x 16 | 1.00 49.4
Hiddenin | 128x128] 4555 24.2
wavelet with 64x64 | 25.75 34.7
high level 32x32 | 6.94 43.6
security 16x16 | 1.99 47.9
Hiddenin |128x128] 55.45 20.9
multiwavel et 64 x 64 30.7 31.2
with high 32x32 | 793 41.1
level security | 16x 16 | 1.00 443
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4. Conclusions

The higher-order statistics appear to
capture certain properties of "natural"
images, and more importantly, these
dtatistics are significantly altered when a
message is embedded within an image.
This makes it possible to detect, with a
certain detection rate and false positive
rate, the presence of hidden messages in
digital images.

Although the system is tested on
image messages, but it is also applicable
for audio signals or video sequence,
arbitrary image file formats, or other
hiding algorithms.

The indiscriminant comparison of
image statistics across al images could be
replaced with a class based analysis,
where, for example, indoor and outdoor
scenes are compared separately.

From practical point of view, the size
of the secret message in Steganographic
system compared with cover size has a
great effect on the detection rates.

The range of steganography systems
security level has decreased to the level of
cryptography. Thus, it became possible to
know the presence of a secret message in
steganography system.

In PSNR results ranging between 30
and 40 (db), we noticed that detection rate
ranges between 80 and 90 (%). While in
ranging between 50 and 55 (db), the
detection rate ranges between 40 and 50
(%) and so on.

NUCEJ Vol.13, No.2
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