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Abstract:  
    Buckling analysis of laminated conical 

shells under axial compressive load are 
investigated analytically using high order and 
Love ,s shell theories. Power series are used to 
solve the developed equations of motion for 
conical shells with different semi vertex 
angles, length- to 

 

radius ratio, number of 
layers and boundary conditions. The validity 
of the presented procedure is confirmed. 
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Introduction: 
Due to their extensive use, particularly in 
aeronautical industry, the buckling of conical 
shells has been studied by many researchers, 
(SOFIYEV Abdullah H. 2003), studied the 
buckling of an orthotropic composite truncated 
conical shell with continuously varying 
thickness, and subjected to a uniform external 
pressure which is a power function of time. At 
first, the fundamental relations and the Donnell 
type stability equations of an orthotropic 
composite truncated conical shell, subjected to 
an external pressure, have been obtained. 
Then, by employing Galerkin method, those 
equations have been reduced of time 
dependent differential equation with variable 
coefficients. Finally, by applying the 
variational method of Ritz method type, the 
critical static and dynamic loads, the 
corresponding wave numbers and the dynamic 
factor have been found analytically.  
   (A. H. Sofiyev and O. Aksogan 2004), 
considered the buckling of an elastic truncated 
conical shell having a meridional thickness 
expressed by an arbitrary function, subject to a 
uniform external pressure, which is a power 
function of time. At first, the fundamental 
relations and Donnell type dynamic buckling 
equation of an elastic conical shell with 
variable thickness have been obtained. Then, 
employing Galerkin's method, those equations 
have been reduced to a time-dependent 
differential equation with variable coefficients. 
Finally, applying the Ritz type variational 

method, the critical static and dynamic loads, 
the corresponding wave numbers, dynamic 
factor and critical stress impulse have been 
found analytically.  
   (SHKUTIN L. I. 2004), studied the 
nonlinear boundary value problem of the 
axisymmetric buckling of a simply supported 
conical shell (dome) under a radial 
compressive load applied to the supported 
edge, and formulate a system of six first order 
ordinary differential equations for independent 
fields of finite displacements and rotations.  
   (Rajesh K. Bhangale et al 2006), obtained 
multi valued solutions using the shooting 
method with specified accuracy. A finite 
element formulation based on. First-Order 
Shear Deformation Theory (FSDT) is used to 
study the thermal buckling and vibration 
behavior of truncated FGM conical shells in a 
high-temperature environment. A Fourier 
series expansion for the displacement variable 
in the circumferential direction is used to 
model the FGM conical shell. The material 
properties of the truncated FGM conical shells 
are functionally graded in the thickness 
direction according to a volume fraction power 
law distribution. Temperature dependent 
material properties are considered to carry out 
a linear thermal buckling and free vibration 
analysis. The conical shell is assumed to be 
clamped clamped and has a high temperature 
specified on the inner surface while the outer 
surface is at ambient temperature. The one-
dimensional heat conduction equation is used 
across the thickness of the conical shell to 
determine the temperature distribution and 
thereby the material properties. In addition, the 
influence of initial stresses on the frequency 
behavior of FGM shells has also been 
investigated.  
   (Francesca Guana and Franco Pastrone 
2007), dealed with the problem of equilibrium 
and buckling of nonlinear elastic axisymmetric 
shells, whose referential shape is a truncated 
circular cone, subject to compressive end 
loadings. They considered thin Kirchhoff 
shells and proved, by means of the bifurcation 
theory of Poincaré, the non-uniqueness of 
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solutions of the boundary value problem 
associated with the equilibrium equations, the 
assign
constraints: i.e., the axisymmetry and the 
inextensibility along meridians. The critical 
loads are determined as well as the bifurcation 
points. If the material is hyper elastic the 
equations of equilibrium are derived f
variational principle and, for some special 
form of the strain energy function, a 
Hamiltonian formulation can be provided. The 
possibility of a non
function is briefly discussed. 
   (A.
buckling 
functionally graded materials (FGMs) 
subjected to a uniform axial compressive load, 
which is a linear function of time. The material 
properties of functionally graded shells are 
assumed to vary continuously through the 
thickness of the shell. The variation of 
properties followed an arbitrary distribution in 
terms of the volume fractions of the 
constituents. The fundamental relations, the 
dynamic stability and compatibility equations 
of functionally graded truncated conica
are obtained first. Applying Galerkin s 
method, these equations have been 
transformed to a pair of time dependent 
differential equation with variable coefficient 
and critical parameters obtained using the 
Runge
   (A.H. Sofiyev et 
vibration and stability of orthotropic conical 
shells with non
properties under a hydrostatic pressure.  At 
first, the basic relations have been obtained for 
orthotropic truncated conical shells, Young s 
moduli an
in the thickness direction. By applying the 
Galerkin method to the foregoing equations, 
the buckling pressure and frequency parameter 
of truncated conical shells are obtained from 
these equations. Finally, carrying out 
computations, the effects of the variations of 
conical shell characteristics, the effects of the 
non-homogeneity and the orthotropy on the 
critical dimensionless hydrostatic pressure and 
lowest dimensionless frequency parameter 
have been studied, when
density vary together and separately.  
   (B N Singh
studied the thermal buckling analysis of
laminated conical shell/panel embedded with
and without piezoelectric layer subjected to 
uniform temperature
order shear deformation
element method.
circumferential components of the 
displacement
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Where: ,,,,,,,sin)( xRxR o =semi 

vertex angle. According to Hamilton s 
Principles (A.C. Ugral 1981):  

0
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where:

   

The work done by the direct force, due to 
displacement (w) only is (A.C. Ugral 1981):   
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Substituting eq. ((2) & (4)) in eq. (3) we get 5-
equations as follows:  
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From the constitutive relations of the kth. 
Lamina the resultants forces-displacement 
components relations are  
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Also:  
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where:  
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Also: 
Substituting eq. (6) in eq. (5) results in:  
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where the coefficients (Fi, j) are given in 
Appendix (A). Multiplying eq. (7-(a, d, e)) by 
R3(x), eq. (7-(b, c)) by R4(x) eq. (7) may be 
modified as:  
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where: F*
1j=R3(x)F1j  F*

2j=R4(x)F2j  
F*

3j=R4(x)F3j  F*
4j=R3(x)F4j  F*

5j=R3(x)F5j   
(j=1,2,3,4,5). 
Let us assume the solution for eqs. (8) in the 
following form (Liyong Tong and Tsun Juei 
Wang 1992):  
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Where (n) is an integer representing 
circumferential wave number of the shell, and 
(am, bm, c m, dm, em) are constants to be 
determined later. On substituting from eqs. (9) 
into eq. (8), five linear algebraic equations are 
developed, by matching the terms of the same 
order in x, and further  the following 
recurrence relations are obtained:  

)).....(1()()1(

)1()()1(

)1()()1()2(

)3()1()()1(

)1()()1(2

17,116,115,1

14,113,112,1

11,110,19,18,1

7,16,15,14,1

3,12,11,1

ameJmeJmeJ

mdJmdJmdJ

mcJmcJmcJmcJ

mcJmbJmbJmbJ

maJmaJmaJma

  

))......(3()2(

)1()()1(

2()2()1()(

)1()2()1()(

)1()2()2(

)1()()1()2(

)1()()1(2

23,222,2

21,220,219,2

18,217,216,215,2

14,213,212,211,2

10,29,28,2

7,26,25,24,2

3,22,21,2

bmeJmeJ

meJmeJmeJ

meJmdJmdJmdJ

mdJmcJmcJmcJ

mcJmcJmbJ

mbJmbJmbJmaJ

maJmaJmaJmb

  



 

NUCEJ    Vol.12, No.2                            Analytical Solution For Buckling                                   134  

))......(3()2()1(

)()1()2()3(

()1()()1(

()3()2()1(

)()1()2()3(

)2()1()()1(

)2()2()1()(

)1()2()3(4

34,333,332,3

31,330,329,328,3

27,326,325,324,3

23,322,319,318,3

17,316,315,314,3

12,311,310,39,3

8,36,35,34,3

3,32,31,3

cmeJmeJmeJ

meJmeJmeJmdJ

mdJmdJmdJmdJ

mdJmdJmcJmcJ

mcJmcJmcJmcJ

mbJmbJmbJmbJ

mbJmaJmaJmaJ

maJmaJmaJmc

  

)().........1(

)()1()3()2(

)1()()1(

)2()1()(

)1()2()3()1(

)()1()2()1(

)()1()2(2

22,4

21,420,419,418,4

17,416,415,4

14,413,412,4

11,410,49,48,4

7,46,45,44,4

3,42,41,4

dmeJ

meJmeJmdJmdJ

mdJmdJmdJ

mcJmcJmcJ

mcJmcJmcJmbJ

mbJmbJmaJmaJ

maJmaJmaJmd

  

Similar to (Liyong Tong and Tsun Juei 
Wang 1992), the constants am, bm, dm, em 

(m>=2) and cm (m>=4) can be expressed in 
term of (a0, a1, b0, b1, c0, c1, c2, c3, d0, d1, e0, 
e1,) with recurrence relations in eqs. (10), and 
are to be determined by imposing boundary 
conditions at both ends of conical. Also, same 
procedure in (Liyong Tong and Tsun Juei 
Wang 1992), the convergence condition for 
series in eqs. (9) may be obtained as:  

01R
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Two types of boundary conditions are used: 
1- Simply supported boundary 

conditions at x=±L 
SS1: V=Nxx=Mxx=W=0 
SS2: V=U=Mxx=W=0 

2- Clamped boundary conditions at 
x=±L 
CC1: Nxx=Nx =W= W/ x=0 
CC2: V=Nxx=W= W/ x =0  

Displacement components model for Love ,s 
theory (Soedel W. 2000) is as follow:  

0

2

10

),,,(

),,,(

),,,(

wtzxw

zvotzxv

zutzxu

   

12 

   
Assuming 4= 5=0 at (z=±H/2), we get:  

   
For conical shell, the strain-displacement 
relations are:  
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13

  

Where: ,,,,,sin)( xRxR o = semi 

vertex angle. According to Hamilton s 
Principles: 
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where:   

 

The work done by the direct force, due to 
displacement (w) only is (A.C. Ugral 1981):  
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where: 
z

iiii SMNdzzz ,,,,1 3   

(i=x, , x ). Substituting eq. ((13) & (15)) in 
eq. (14) we get 3-equations as follows:  
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From the constitutive relations of the kth. 
Lamina the resultants forces-displacement 
components relations are:  
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Also:  

where: dzzzQCBA ijijijij
2,,1,, .  

Also substituting eq. (17) in eq. (16) results in: 
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8 

Multiplying eq. (18-(a)) by R3(x), eq. (18-(b, 
c)) by R4(x) eqs. (18) may be modified as: 
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where: F*
1j=R3(x)F1j  F*

2j=R4(x)F2j  
F*

3j=R4(x)F3j   (j=1,2,3,4,5), let us assume the 
solution for eqs. (19) in the following form 
(Liyong Tong and Tsun Juei Wang 1992):  
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20 

Using the same solution procedure shown in 
(HSDT), the following recurrence relations are 
obtained 
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Numerical Results: 
Buckling of isotropic conical shells under axial 
compression with different parameters under 
different boundary conditions, are analyzed. 
The obtained results cr and their comparison 
with those in (Liyong Tong and Tsun Juei 
Wang 1992) are shown with different values 
of (L/R1), semi vertex angles ( ) and different 
boundary conditions i.e. SS1 in Table (1) and 
SS2 in Table(2). Present work results for cr 

are close to those from (Liyong Tong and 
Tsun Juei Wang 1992), where: cr=(Pcr/Pcl)  

and 

 

(E= modulus of 

elasticity, H= total shell thickness and µ= 
Poisson ,s ratio). There is however a difference 
in circumferential wave number. It can be seen 
that cr  tends to (.5) for SS1 and to (1) for SS2, 
so that buckling critical values for SS1 is lower 

than that for SS2 shells. For short conical with 
(L/R1) =.2, cr becomes large as ( ) increase, 
and it tends to a constant value independent of 
( ) for cones with (L/R1) =.5. While for 
clamped boundaries (CC1& CC2), cr  tends to 
(1) for cones with (L/R1) =.5 and cr becomes 
large as ( ) increase as shown in Tables (3) 
and (4). Results of both HSDT and Loves 
theory are almost close to each other.  

   Laminated cross-plied cones critical 
buckling load are obtained using two different 
shell theories, under changing different 
parameters. Critical load ratios and associated 
circumferential wave numbers are shown for 
these cones with (R1/H=100), and with 
different values of (L/R1), semi vertex angles 

, number of laminate and boundary 
conditions, i. e. SS1 in Table(5), SS2 in 
Table(6), CC1 in Table(7) and CC2 in 
Table(8). we can see from Table(5) to Table 
(8) (as proven by other researchers) that load  
ratio increase as total number of layer becomes 
larger for cones with (L/R1) and  fixed. For 
length -to- radius ratio (L/R1) =0.2 the critical 
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load ratio is larger than its value when 
(L/R1)>0.2which tends to be constant and 
other parameters remain unchanged. 
   Another important parameter effect is that of 
changing of  on load ratio which is similar to 
that of number of layers ( cr changes directly 
with ). However for short cones this effect is 

very strong, while for long cones it becomes 
quite weak.  
In all above calculations, (35) terms of eqs. (9 
& 20) are used and we compute cr with µ  is 
replaced by µ x

 
and E by Ex for laminated 

cones.  

Table (1): Critical load ratio cr

 
and (n) for SS1 boundary conditions (µ=.3,  R1/H=100). 

  

Theory (L/R1)=.2 (L/R1)=.5 

Present(n) (Liyong Tong 
and Tsun 

Juei Wang 
1992)  

Present(n) (Liyong Tong 
and Tsun 

Juei Wang 
1992)  

100

  

HSDT .4673(0) 0.5075(0) .4718(0) 0.5147(0) 

 

Love ,s .4809(0) .4896(0) 

300

 

HSDT  .5101(0) 0.5567(0) .5001(0) 0.5139(0) 

 

Love ,s .5414(0) .5165(0) 

600

 

HSDT  .8205(0) 0.8701(0) .4102(0) 0.4486(0) 

Love ,s  .8662(0) .4408(0) 

   

Table (2): Critical load ratio cr

 

and (n) for SS2 boundary conditions (µ=.3,  R1/H=100). 

  

Theory (L/R1)=.2 (L/R1)=.5 

Present(n) (Liyong Tong 
and Tsun 

Juei Wang 
1992)  

Present(n) (Liyong Tong 
and Tsun 

Juei Wang 
1992)  

100

 

HSDT .968(7) 1.007(7) .931(8) 1.002(8) 

Love ,s  1.009(7) 1.002(8) 

300

 

HSDT  1.012(5) 1.017(5) .989(7) 1.001(7) 

Love ,s 1.015(5) 1.003(7) 

600

  

HSDT  1.092(0) 1.144(0) 1.025(5) 1.044(7) 

Love ,s 1.113(0) 1.038(5) 
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Table (3): Critical load ratio cr

 
and (n) for CC1 boundary conditions (µ=.3,  R1/H=100). 

  
Theory (L/R1)=.2 (L/R1)=.5 

Present(n) Discrepancy 
(%) 

Present(n) Discrepancy 
(%) 

100

 
HSDT 1.6807(0) 8.692 .9735 (1) 3.785 

Love ,s 1.8407(0) 1.0118(1) 

300

 

HSDT  1.7743(0) 8.916 0.9015(7) 9.904 

 

Love ,s 1.9480(0) 1.0006(7) 

600

 

HSDT  3.0251(0) 8.855 .9231(0) 8.694 

Love ,s

      

Table (4): Critical load ratio cr

 

and (n) for CC2 boundary conditions (µ=.3,  R1/H=100). 

  

Theory (L/R1)=.2 (L/R1)=.5 

Present(n) Discrepancy 
(%) 

Present(n) Discrepancy 
(%) 

100

 

HSDT  1.6311(0) 4.317 .8725(8) 5.327 

Love ,s 1.7047(0) .9216(8) 

300

 

HSDT  1.7851(0) 7.794 .9086(8) 6.310 

Love ,s  1.9360(0) .9698(8) 

600

 

HSDT  3.1405(0) 6.535 1.0012(0) 1.968 

Love ,s  3.3601(0) 1.0213(0) 
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Table (5): Critical load ratio cr and (n) for multilayered cross-ply with SS1 boundary conditions 
( R1/H=100). 

 
No. HSDT  Love ,s  Discrepancy 

(%) 

HSDT  Love ,s Discrepancy 

(%) 

  
(L/R1)=0.2   (L/R1)=0.5 

 

10 

2 .0821(8) .0865(8) 5.086 .0537(7) .0590(7) 8.983 

4 .1780(7) .1812(7) 1.766 .0815(6) .0891(6) 8.529 

6 .1863(7) .1986(7) 6.193 .0911(6) .0960(6) 5.104 

 

30 

2 .0901(8) .0923(8) 2.383 .0554(7) .0592(7) 6.418 

4 .2001(6) .2131(6) 6.100 .0907(6) .0933(6) 2.786 

6 .2142(6) .2212(6) 3.164 .0935(5) .0962(5) 2.806 

 

60 

2 .1275(6) .1381(6) 7.675 .0567(5) .0595(5) 4.705 

4 .3087(5) .3159(5) 2.279 .1008(4) .1087(4) 7.267 

6 .3363(5) .3551(5) 5.294 .1053(4) .1091(4) 3.483 

  

Table (6): Critical load ratio cr and (n) for multilayered cross-ply with SS2 boundary conditions 
( R1/H=100). 

 

No. HSDT  Love ,s  Discrepancy 

(%) 

HSDT Love ,s Discrepancy 

(%) 

  

(L/R1)=0.2   (L/R1)=0.5 

 

10 

2 .1522(9) .1636(9) 6.968 .0764(9) .0790(9) 3.291 

4 .2011(8) .2206(8) 8.839 .1075(6) .1105(6) 2.714 

6 .2095(8) .2267(8) 7.587 .1082(6) .1119(6) 3.306 

 

30 

2 .1706(9) .1818(9) 6.160 .0803(9) .0828(9) 3.019 

4 .2261(8) .2451(8) 7.751 .1071(6) .1108(6) 3.339 

6 .2278(8) .2497(8) 8.770 .1086(6) .1121(6) 3.122 

 

60 

2 .2661(7) .2901(7) 8.273 .0915(6) .0959(6) 4.588 

4 .3682(6) .3781(6) 2.618 .1121(5) .1230(5) 8.861 

6 .3706(6) .3864(6) 4.089 .1167(5) .1251(5) 6.714 
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Table (7): Critical load ratio cr and (n) for multilayered cross-ply with CC1 boundary conditions 
( R1/H=100). 

 
No. HSDT  Love ,s  Discrepancy (%) HSDT  Love ,s  Discrepancy 

(%) 

  
(L/R1)=0.2   (L/R1)=0.5 

 

10 

2 .2418(9) .2616(9) 7.568 .0862(8) .0893 (8) 3.471 

4 .6001(8) .6341(8) 5.361 .1541(6) .1673(6) 7.890 

6 .7027(8) .7116(8) 1.250 .1633(6) .1791(6) 8.821 

 

30 

2 .2766(9) .2935(9) 5.758 .0901(7) .0912(7) 1.206 

4 .7057(7) .7136(7) 1.107 .1672(6) .1761(6) 5.053 

6 .8023(7) .8146(7) 1.509 .1705(6) .1887(6) 9.644 

 

60 

2 .4721(7) .4913(7) 3.907 .1081(6) .1151(6) 6.081 

4 1.1061(5) 1.2103(5) 8.609 .2282(5) .2470(5) 7.611 

6 1.2858(5) 1.3377(5) 3.879 .2508(5) .2641(5) 5.035 

  

Table (8): Critical load ratio cr and (n) for multilayered cross-ply with CC2 boundary conditions 
( R1/H=100). 

 

No.

 

HSDT  Love ,s

 

Discrepancy

 

(%)

 

HSDT  Love ,s  

 

Discrepancy

 

(%)

   

(L/R

   

(L/R
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Conclusions:  

   Analytical solution for buckling of Loves 
and third-order shell theories are applied to 
cross-ply cone shells. Third-order shell theory 
yields results close to those of Love shell 
theory but it almost under predicts buckling 
loads, the maximum discrepancy is (9.904%). 
For simply supported shells buckling 
parameter ( cr) changes directly with the 
number of layers for same ( , (L/R1)), also 
semi vertex angle has the same effect on the 
buckling parameter for same (No. , (L/R1)), 
while this parameter changes indirectly with 
(L/R1) for the same ( , No.). Buckling 
parameter ( cr) for clamped boundary 
conditions is larger than that for simply 
supported shells. The effect of semi vertex 
angle on the buckling parameter of long 

conical shells is less than its effect on short 
shells.  
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