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Abstract:

Buckling analysis of laminated conical
shells under axial compressive load are
investigated analytically using high order and
Love 's shell theories. Power series are used to
solve the developed equations of motion for
conical shells with different semi vertex
angles, length- to — radius ratio, number of
layers and boundary conditions. The validity
of the presented procedure is confirmed.
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I ntroduction:

Due to their extensive use, particularly in
aeronautical industry, the buckling of conical
shells has been studied by many researchers,
(SOFIYEV Abdullah H. 2003), studied the
buckling of an orthotropic composite truncated
conica shell with continuously varying
thickness, and subjected to a uniform external
pressure which is a power function of time. At
first, the fundamental relations and the Donnell
type stability equations of an orthotropic
composite truncated conical shell, subjected to
an external pressure, have been obtained.
Then, by employing Galerkin method, those
equations have been reduced of time
dependent differential equation with variable
coefficients.  Finaly, by applying the
variational method of Ritz method type, the
critical static and dynamic loads, the
corresponding wave numbers and the dynamic
factor have been found analytically.

(A. H. Sofiyev and O. Aksogan 2004),
considered the buckling of an elastic truncated
conical shell having a meridional thickness
expressed by an arbitrary function, subject to a
uniform external pressure, which is a power
function of time. At first, the fundamental
relations and Donnell type dynamic buckling
equation of an elastic conical shell with
variable thickness have been obtained. Then,
employing Galerkin's method, those equations
have been reduced to a time-dependent
differential equation with variable coefficients.
Finaly, applying the Ritz type variationa
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method, the critical static and dynamic loads,
the corresponding wave numbers, dynamic
factor and critical stress impulse have been
found analytically.

(SHKUTINL. [I. 2004), studied the
nonlinear boundary value prablem of the
axisymmetric buckling of a simply supported
conicad shell (dome) wunder a radia
compressive load applied to the supported
edge, and formulate a system of six first order
ordinary differential equations for independent
fields of finite displacements and rotations.

(Rajesh K. Bhangale et al 2006), obtained
multi valued solutions using the shooting
method with specified accuracy. A finite
element formulation based on. First-Order
Shear Deformation Theory (FSDT) is used to
study the thermal buckling and vibration
behavior of truncated FGM conical shellsin a
high-temperature environment. A  Fourier
series expansion for the displacement variable
in the circumferential direction is used to
model the FGM conica shell. The material
properties of the truncated FGM conical shells
are functionaly graded in the thickness
direction according to a volume fraction power
law distribution. Temperature dependent
material properties are considered to carry out
a linear thermal buckling and free vibration
analysis. The conical shell is assumed to be
clamped-clamped and has a high temperature
specified on the inner surface while the outer
surface is at ambient temperature. The one-
dimensional heat conduction equation is used
across the thickness of the conical shell to
determine the temperature distribution and
thereby the material properties. In addition, the
influence of initial stresses on the frequency
behavior of FGM shells has aso been
investigated.

(Francesca Guana and Franco Pastrone
2007), dealed with the problem of equilibrium
and buckling of nonlinear elastic axisymmetric
shells, whose referential shape is a truncated
circular cone, subject to compressive end
loadings. They considered thin Kirchhoff
shells and proved, by means of the bifurcation
theory of Poincaré, the non-uniqueness of
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solutions of the boundary value problem
associated with the equilibrium equations, the
assigned end loadings and the geometrical
congtraints: i.e., the axisymmetry and the
inextensibility along meridians. The critical
loads are determined as well as the bifurcation
points. If the materia is hyper elastic the
equations of equilibrium are derived from a
variational principle and, for some specia
form of the strain energy function, a
Hamiltonian formulation can be provided. The
possibility of a non-convex strain energy
function is briefly discussed.

(A.H. Sofiyev 2007), studied dynamic
buckling of truncated conical shells made of
functionally graded materids (FGMY)
subjected to a uniform axial compressive load,
which isalinear function of time. The material
properties of functionaly graded shells are
assumed to vary continuously through the
thickness of the shell. The variation of
properties followed an arbitrary distribution in
teems of the volume fractions of the
congtituents. The fundamental relations, the
dynamic stability and compatibility equations
of functionally graded truncated conical shells
are obtained first. Applying Gaerkin’s
method, these equations have been
transformed to a par of time dependent
differential equation with variable coefficient
and critical parameters obtained using the
Runge—K utta method.

(A.H. Sofiyev et al 2008), studied the
vibration and stability of orthotropic conical
shells  with  non-homogeneous  material
properties under a hydrostatic pressure. At
first, the basic relations have been obtained for
orthotropic truncated conical shells, Young’s
moduli and density of which vary continuously
in the thickness direction. By applying the
Galerkin method to the foregoing equations,
the buckling pressure and frequency parameter
of truncated conical shells are obtained from
these equations. Finally, carrying out some
computations, the effects of the variations of
conical shell characteristics, the effects of the
non-homogeneity and the orthotropy on the
critical dimensionless hydrostatic pressure and
lowest dimensionless frequency parameter
have been studied, when Young’s moduli and
density vary together and separately.

(B N Singh” and Jibumon B Babu 2008),
studied the therma buckling anaysis of
laminated conical shell/pand embedded with
and without piezoelectric layer subjected to
uniform temperature rise based on a higher-
order shear deformation theory using the finite
eement method. The longitudinal and
circumferential components of the
displacement field are given as a power series
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of the transverse coordinate and recast in such
amanner that the conditions of zero transverse
shear stresses are satisfied a priori. The effect
of stacking sequence, boundary condition,
dant ratio and thickness ratio on the thermal
buckling temperature has been examined.

In present work, higher order shear
deformation theory (HSDT) is analyzed by
using analytic solution. The derived
differential motion equations are solved using
power series technique, then resulting
simultaneous equations are solved using
MATLAB7. Higher order shear deformation
theory results are compared with those from
Love ' s theory derived in present work, and
with those published by other researchers who
used different theories.

Mathematical For mulation:

Figure (1): Conical geometry

Displacement components model for (HSDT)
theory (J.N. Reddy 2004) is as follow
(assuming e,=¢5=0 at (z=+H/2)), we get:

ux6,zt)=u,+zxd¢
4 [
_(342}23_@ | ax}

V(X 6,Zt) =VOo+ Zx ¢, 1

—(izj X 23_¢2 +(iIa—N -V, cossxﬂ
3H i RX) \o6

WX &,zt) =w,

For conical shell, the strain-displacement
relations are;
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Where: R(X) =R, + xsine,,,,,,, a=semi

vertex angle. According to Hamiltons
Principles (A.C. Ugral 1981):

tj(au ~Q)ot =0 5

t2

where:

Jx R(x)d&dz

O 08 + T g0 5y
M = j +0,,0€,, +0,,08,,
A2\ + 0,08, +0,0¢,

S

The work done by the direct force, due to
displacement (w) only is (A.C. Ugral 1981):

RX | o0
o= ({1 9 a@jﬂ
RN 00)) &
o, ow o
(1 o0 a60 oo
AR (1w &
=237 {%Iﬁ*m‘a_e}
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_(29 na] S, ISy Sy (s; naj_
:% [ [P a(f;—w)2 x R(x)dzdxde | 4 RY ) ox o R(Y)
Az X ( 4 Y, (L1 )\ (217, .
3H? R(X)) 06> | R(X))oxo0
where
IG 1,22 )z=(N,,M,,S) (i=x, 0, x6, (Zsinajasxg
2
ez) (R 1
Iai(Lzz)dz=(Qi,Ki) (i=6z, x2) N Ccosx 10 Sina +6QXZ+ 1 \Q,
z TR ) TARXY) & \Rx) o0
substituting eg. ((2) & (4)) in eq. (3) we get 5- 4 sina) oK 1 K
equations as follows: - —< | Ky +—=+ -
H*) R(X) oX R(X) ) 06
2
%+(N -N Sim 1N, _ + i 6_\£v:
x w0 R RX)} 0 27R(X) OX
' Sha 0S,,
i 6N66+2Nx6 iu +_6NX€ + [_J )+—+
RX) ) 06 RX)) ox oM _[ 4 j R(X) OX
acosr {1 8%9+2§99Ln+§ ox  \3H? ( 1 J 0
3H?RX) R(x) 00 RX ) & R(x
cosx sna M, ~M,, )+ 1 (oM,
R | &~ Hz Rx ) R ) 00
-Q, + z)ijz =0
%_(iz e &S (118,
x \3H | R¥ RX ) 60
25y 1 \aM, 4
_— +H— K, =0
(F(X) jM@ (F(X) o0 < (HZ)jK&
From the constitutive relations of the kth.
Lamina the resultants forces-displacement
components relations are
Nxx I All A12 A16 Bll B12 Bl6 D11 D12 D16 gxx
NGG A21 A22 A26 B21 BZZ BZ6 D21 DZZ D26 599
NxG A61 A62 A66 Bél B62 366 D61 D62 D66 ng
Mxx Bll BlZ Bl6 Cll ClZ (:16 E11 E12 E16 Kxx
iMgg p =| Ba1 Baz Bag Co1 Cop CyeEar Ezp Epe | X (Koo p
MxB B61 362 366 C61 C62 C66 E61 E62 E66 Kxg
Sxx D11 D12 D16 E11 E12 E16 Hll H12 H16 T’xx
Se6 Dy1 Dyy Dy Exy Eyy Ejze Hpyy Hyy Hye Noe
Sx@ - D61 D62 D66 E61 E62 E66 H61 H62 H66- nx@
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Also:
Qo ApaAys5CaaCys] (Eoz
Qxz | _ |AsaAssCsaCiss | ) Exz
Ko, CasCasEssEss | | Voz
K., CogCocbeyEec] \Viz

where:

(A.B.G.D,E.H )= [QlzZ 22,27

Also:
Substituting eg. (6) in eg. (5) resultsin:

FU+FEV+FW+F 4 +F4° =0...0)

FU+EV+FEW+F, ¢ +F.¢* =0..0)
FU+FV+FW+F, ¢ +F. ¢ +FW=0....6

FU+FNV+FE W+ F.f + F45¢2 =0...d)
RU+FRV+REW+F 4 +F 4 =0...€

U =u(x)cosné,,,,,,,,u(x)= iamx’“
m=0
V =v(X)sinng,........(x)= 3 b x"
m=0
W =w(x)cosné,,,,,,,, WX) = icmxm
m=0

# = 40001, (%)= 3"

F =4SN0, (X = S0 X"

where the coefficients (F, ;) are given in
Appendix (A). Multiplying eq. (7-(a, d, €)) by
R(x), eqg. (7-(b, ¢)) by RY(x) eq. (7) may be
modified as:

Where (n) is an integer representing
circumferential wave number of the shell, and
(@m bm C m dn, €n) ae constants to be
determined later. On substituting from egs. (9)
into eq. (8), five linear algebraic equations are
developed, by matching the terms of the same
order in x, and further the following
recurrence relations are obtained:

FU+FLV +FW+ FL¢' + Fog® =0

FU+F.V +FW+F,¢"+F.$°=0

FU+FV +F W+ Fo gt + Fog® + F, W=0

FoU+FLV +F W+F,¢"+F.p>=0

FoU+FoV + W+ F g+ Fep” =0

a(m+ 2) = ‘]J,la(rrH':D + lea(fﬂ + Jlsa(m_])

+Jy 6D+, o(m) + J, H(m=1) + J, . o(mH+-3
+J,g0(MH-2) + 3, (M D) + 3, M) + J,, M=)
Jllzd(m+]) + de(ﬁ) + J114d(m_]) +

8 m+) +J, 8m+J, Am-0)....4

where.  F ;=R*(X)Fy
Fy=R'00Fy  F4=R(X)F4
(=1,2,3,4,5).

Let us assume the solution for egs. (8) in the
following form (Liyong Tong and Tsun Juel
Wang 1992):

Fa=R(F,
F 5=RY0)Fs
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b(mH-2)=J,,a(m+1) + 3, ,a(m) + J,.a(m-1)
+J,,8Mm=2) +J, b(m+1) + J, b(m) +J, ,o(m-1)
+J,60(M=2) +J,c(MH-2) + I, )M+ +
3o M+, ,0m=1) +J,, (M-2) +J,, d(m+])
J516d(M) + 3, d(M=1) + 3, ,A(M-2) + I, M+
J, 1 8m+D) +J,,8m +J, , m-1) +

3, 8 (M=-2)+J,,8m-3....10)
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dm+4)=J,,a8m+3) +Jy,am+2) + 3, am+D) +
Jam +J,.am=-1) +J, .a(m-2) + J, b(m+2) +
Ty + 5, o) + Iy o(M=1) + Iy M-2)

+J50 M3 + I, AMH-2) + I, A(MH-D) + A1)
Ja1slM=1) + I3, A(M-2) + I (M3 + I, 0(M
+ 5, (D) + 3, d(M) + Iy, d(M=-1) + I, d(Mm-
Jao6d(M=3) + I, f(MH+2) + Iy o (M) + I, . €M)
oo 8M=-0+ 3, 8M-2) + 3, 6Mm-J.....Q

Assuming g4=¢5=0 at (z=xH/2), we get:

P
- v(?zfosa 1 /0w,
ﬁz:(R@))_EE%E?)

For conical shell, the strain-displacement
relations are;

0(”‘*3 :J4;La(m"'3 +‘]4,2dm"']) +J4,3dn) +
J,Am-D+J,.am-2+J,o(m+D)+J, om+
J, =1 +J,,om+-3 +J,, M+ +J,, Am))
+J M+, -0+, Am-2) +

I dmtd) +3,, dim+J, Aim-D+

J -2 +J,, -3 +J,, gm+D)+J,, €M+

_ U,
X

0w
K, =-Z
ox?

g

Similar to (Liyong Tong and Tsun Juei
Wang 1992), the constants an, bm, dm, €m
(m>=2) and ¢,, (m>=4) can be expressed in
term of (ay, &, bo, b1, Co, C1, Cp, Ca, Do, di, &,
e1,) with recurrence relations in egs. (10), and
are to be determined by imposing boundary
conditions at both ends of conical. Also, same
procedure in (Liyong Tong and Tsun Juei
Wang 1992), the convergence condition for
seriesin egs. (9) may be obtained as:

R >0 1

Two types of boundary conditions are used:

1- Simply supported boundary
conditions at x=tL
SS1L: V=N =M, =W=0
SS2: V=U=M,,=W=0

2- Clamped boundary conditions at
x=xL
CC1: Nxx=N,,=W=0W/0ox=0
CC2: V=N,,=W=0W/ox =0

Displacement components model for Love 's
theory (Soedel W. 2000) is as follow:

U(X101 th) = uo + Zxﬁl
v(x,0,zt)=vo+zxf, |12
w(x,6,z1t) =w,
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| 5 wosn e
Egg =| —— | — + U, SN + W, COSx
R(x) | 06 ]
— | — |+
1 R(x) | 667
Ko =—2Z X| —— |

(R(X)j . (an

sina| —

OX

e(m+2)=Jg,a(m+1) + Jg a(m) +
Jsa(m—1) + Jg ,b(m+ 2) +
Jssb(m+1) + Jg b(m) +
Jg,b(m=1) + Jg b(m-2) +
JsoC(mMm+2) + Jg oc(m+1) +
‘J5,llc(m) + ‘JS,lZC(m -+ 10
Jsse(Mm=2) + Jg,d(M+1)
+ Jg5d(m) + Jg cd(m—1) +
Js€(M+1) + I ,.8(m) +
‘Js,lge(m - 1) + Js,zoe(m - 2)
+ Jg n8(Mm-3)........ (e
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Where: R(X) = R, + Xsine,,,,, 0= semi
vertex angle. According to Hamilton's

1 0
5Q=5£ZJPXX><8(

j jam5gal?(x)dxdﬂjz: '[ jaxxé -z

My2 » R(x)dzdxdo
X

R(X)dxdtiz

Principles:

tl

fou-a)t=0

t2

14

where:

O 0E o

A = [[| + 06402, + |x R(x)d6dzdx
Az

O x90& g

The work done by the direct force, due to
displacement (w) only is (A.C. Ugral 1981):

j{ 5——|v| 5[2WJR(x)dxd0}

A

15

ja lzz )dz (N,,M,,S)

where:

(i=x, 0, x80). Substltutmg eg. ((13) & (15)) in
eg. (14) we get 3-equations as follows:;

aNXXJr(Nxx—Nae sna | 1 8NX9=O
OX R(x) R(x) ) 06

F(x)] % m{ j x

CO&I (sm M, [1\&\@9 I
RY, \RW) & (RY) a0 |

(Zsm\avl M, awﬁﬁ[sumJ
R & a¢ & (RY
(1 1M, (2\82M [2sum\av|xﬂ 16
R o Ry aeo (R ) a0

_Ng_ XX

cost P, &Jw
+—=2-—=0
RY ) 2RY a¢

From the congtitutive relations of the kth.
Lamina the resultants forces-displacement
components relations are:

Nyx A1 Ay A1 Bii Bz Bie Exx
Ngg [A21 Az AzeBz1 Bzy By l €00
Nyo A1 Ae2 AeeBe1 Bez Bee % Ex6 17
M Byy Biz Big Ci1 (i (e Kox
Mgg By1 By Bys Co1 Cap Cye Koo
Mg le Bey Beg Coq  Coo Csej Kxo
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Also:
where: (Aj By Gy )= IQij (22" )z

Also substituting eg. (17) in eg. (16) resultsin:

'zlp+|:12\/+|:lw+ﬁ‘¢1+|:15¢2 =0.......d

1
FU+FN+FW R + R =0......e 8

FEU+EV+EW+F 4 +Fgf +FW=0......

dm+4)=Jam+3 + 3,8+ 2) + M) +

J M +J s am=1) + J; . am-2) + J, o(m+2) +
J3d(mD) + 3, M) + 5 o(mM-1) + I, (m-2)

+ 331,03 + Iy 0MH-2) + Iy A D) + 33,
o dm=-D) +J,, m-2).....9

Multiplying eq. (18-(a)) by R(x), eg. (18-(b,
c)) by R*(x) egs. (18) may be modified as:

FU+FV+FEW+F, ¢ +F$°=0

F;lU + F;ZV + F;3W+ F;4¢l + F2*5¢52 =0
FoU + FLV + FoW + Fo gt + Frg?
+F,W=0

where: F =R (X)Fy; F 5=R(X)F
F3=R'(X)F3 (=1,2,3,4,5), let us assume the
solution for egs. (19) in the following form
(Liyong Tong and Tsun Juei Wang 1992):

Numerical Results:

Buckling of isotropic conical shells under axial
compression with different parameters under
different boundary conditions, are analyzed.
The obtained results p,, and their comparison
with those in (Liyong Tong and Tsun Juei
Wang 1992) are shown with different values
of (L/Ry), semi vertex angles (a) and different
boundary conditionsi.e. SS1 in Table (1) and
SS2 in Table(2). Present work results for pg
are close to those from (Liyong Tong and
Tsun Juei Wang 1992), where: pg=(Py/Py)
T ZCOSCIZ

and P, = (ZE;ZW) (E= modulus of
elagticity, H= total shell thickness and p=
Poisson 'sratio). There is however a difference
in circumferential wave number. It can be seen
that p tendsto (.5) for SS1 and to (1) for SS2,
so that buckling critical valuesfor SS1 islower

U =u(x)cosnd, ., ..., U(X) =

20

Vv =v(x)sinn@,,,,,,,,,,,,,V(X)=mi;obmxm
W=vv(x)cosn9,,,,,,,,,,,W(X)=i

bm+2)=J,,am+2) +J,,am +J,.am-1) +
35, AM=2) +J, om0 + 3, (M) + 3, o(m-1)
+J,go(mM=2) +J,,0m+2) +J,, QM+ +
Jlec(n) + lezc(m_]) + legm_z) )

Using the same solution procedure shown in
(HSDT), the following recurrence relations are
obtained

aAm+2)=Jd,am+D) +J,am+Jam-1)+
Jp (D) + 3, () + I, (M=) + J, ,o(m+-3J
+J1g0(M+2) + 3, (M0 + 3, M)
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than that for SS2 shells. For short conical with
(L/Ry) =.2, per becomes large as (o) increase,
and it tends to a constant value independent of
(o) for cones with (L/Ry) =.5. While for
clamped boundaries (CC1& CC2), p. tends to
(1) for cones with (L/R;) =.5 and p.; becomes
large as (a) increase as shown in Tables (3)
and (4). Results of both HSDT and Loves
theory are almost close to each other.

Laminated cross-plied cones critical
buckling load are obtained using two different
shell theories, under changing different
parameters. Critical load ratios and associated
circumferential wave numbers are shown for
these cones with (Ry/H=100), and with
different values of (L/R;), semi vertex angles
a, humber of laminate and boundary
conditions, i. e SS1 in Table(5), SS2 in
Table(6), CCl in Table(7) and CC2 in
Table(8). we can see from Table(5) to Table
(8) (as proven by other researchers) that load
ratio increase as total number of layer becomes
larger for cones with (L/R;) and o fixed. For
length -to- radius ratio (L/R;) =0.2 the critical
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load ratio is larger than its value when
(L/Ry)>0.2which tends to be constant and
other parameters remain unchanged.

Another important parameter effect is that of
changing of o on load ratio which is similar to
that of number of layers (py changes directly
with «). However for short cones this effect is

very strong, while for long cones it becomes
quite weak.

In all above caculations, (35) terms of egs. (9
& 20) are used and we compute p., with g is

replaced by p,x and E by E, for laminated

cones.

Table (1): Critical load ratio p, and (n) for SS1 boundary conditions (4=.3, R,/H=100).

a Theory (L/Ry)=.2 (L/Ry)=5
Present(n) (Liyong Tong Present(n) (Liyong Tong
and Tsun and Tsun
Juel Wang Juel Wang
1992) 1992)
10° HSDT 4673(0) 0.5075(0) A4718(0) 0.5147(0)
Love's .4809(0) .4896(0)
30° HSDT .5101(0) 0.5567(0) .5001(0) 0.5139(0)
Love's .5414(0) .5165(0)
60° HSDT .8205(0) 0.8701(0) 4102(0) 0.4486(0)
Love's .8662(0) .4408(0)

Table (2): Critical load ratio p, and (n) for SS2 boundary conditions (u=.3, R,/H=100).

o Theory (L/IRy=.2 (L/Ry)=5
Present(n) (Liyong Tong Present(n) (Liyong Tong
and Tsun and Tsun
Juel Wang Juel Wang
1992) 1992)
10° HSDT .968(7) 1.007(7) .931(8) 1.002(8)
Love's 1.009(7) 1.002(8)
30° HSDT 1.012(5) 1.017(5) .989(7) 1.001(7)
Love's 1.015(5) 1.003(7)
60° HSDT 1.092(0) 1.144(0) 1.025(5) 1.044(7)
Love's 1.113(0) 1.038(5)
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Table (3): Critical load ratio p, and (n) for CC1 boundary conditions (u=.3, R,/H=100).

a Theory (L/Ry)=.2 (L/R)=5
Present(n) Discrepancy Present(n) Discrepancy
(%) (%)
10° HSDT 1.6807(0) 8.692 9735 (1) 3785
Love's 1.8407(0) 1.0118(1)
30° HSDT 1.7743(0) 8.916 0.9015(7) 9.904
Love's 1.9480(0) 1.0006(7)
60° HSDT 3.0251(0) 8.855 .9231(0) 8.694
Love 's 3.3190(0) 1.0110(0)

Table (4): Critical load ratio p,; and (n) for CC2 boundary conditions (u=.3, R./H=100).

a Theory (L/IR)=.2 (L/R)=.5
Present(n) Discrepancy Present(n) Discrepancy
(%) (%)

10° HSDT 1.6311(0) 4317 .8725(8) 5.327
Love's 1.7047(0) .9216(8)

30° HSDT 1.7851(0) 7.794 .9086(8) 6.310
Love's 1.9360(0) .9698(8)

60° HSDT 3.1405(0) 6.535 1.0012(0) 1.968
Love's 3.3601(0) 1.0213(0)
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Table (5): Critical load ratio p and (n) for multilayered cross-ply with SS1 boundary conditions

( Ry/H=100).
o | No. HSDT Love's | Discrepancy HSDT Love's | Discrepancy
(L/R;)=0.2 (%) (L/Ry)=05 (%)
2 .0821(8) .0865(8) 5.086 .0537(7) .0590(7) 8.983
10 4 .1780(7) .1812(7) 1.766 .0815(6) .0891(6) 8.529
6 .1863(7) .1986(7) 6.193 .0911(6) .0960(6) 5.104
2 | .0001(8) .0923(8) 2.383 .0554(7) | .0592(7) 6.418
30 | 4 | .2001(6) .2131(6) 6.100 .0907(6) | .0933(6) 2.786
6 | .2142(6) .2212(6) 3.164 .0935(5) | .0962(5) 2.806
2 | .1275(6) .1381(6) 7.675 .0567(5) | .0595(5) 4705
60 | 4 .3087(5) .3159(5) 2.279 .1008(4) .1087(4) 7.267
6 .3363(5) .3551(5) 5.294 .1053(4) .1091(4) 3.483

Table (6): Critical load ratio ps, and (n) for multilayered cross-ply with SS2 boundary conditions

( Ry/H=100).
a | No. HSDT Love's Discrepancy HSDT Love's Discrepancy
(L/Ry)=0.2 (%) (L/Ry)=0.5 (%)
2 | 1522(9) | .1636(9) 6.968 .0764(9) | .0790(9) 3.291
10 4 .2011(8) .2206(8) 8.839 .1075(6) .1105(6) 2714
6 .2095(8) .2267(8) 7.587 .1082(6) .1119(6) 3.306
2 .1706(9) .1818(9) 6.160 .0803(9) .0828(9) 3.019
30 | 4 | 2261(8) | .2451(8) 7.751 .1071(6) | .1108(6) 3.339
6 | .2278(8) | .2497(8) 8.770 .1086(6) | .1121(6) 3122
2 | 2661(7) | .2901(7) 8.273 .0915(6) | .0959(6) 4588
60 | 4 | .3682(6) | .3781(6) 2.618 1121(5) | .1230(5) 8.861
6 .3706(6) .3864(6) 4.089 .1167(5) .1251(5) 6.714
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Table (7): Critical load ratio p and (n) for multilayered cross-ply with CC1 boundary conditions
( Ry/H=100).

a | No. HSDT Love's Discrepancy (%) HSDT Love's Discrepancy
(L/R)=0.2 (L/Ry)=05 (%)
2 .2418(9) .2616(9) 7.568 .0862(8) | .0893(8) 3.471
10| 4 .6001(8) .6341(8) 5.361 .1541(6) | .1673(6) 7.890
6 | .7027(8) | .7116(8) 1.250 .1633(6) | .1791(6) 8.821
2 | .2766(9) | .2935(9) 5.758 .0901(7) | .0912(7) 1.206
30| 4 .7057(7) .7136(7) 1.107 .1672(6) .1761(6) 5.053
6 | .8023(7) | .8146(7) 1.509 .1705(6) | .1887(6) 9.644
2 | 47217) | .4913(7) 3.907 .1081(6) | .1151(6) 6.081
60 | 4 | 1.1061(5) | 1.2103(5) 8.609 .2282(5) | .2470(5) 7.611
6 | 1.2858(5) | 1.3377(5) 3.879 .2508(5) | .2641(5) 5.035

Table (8): Critical load ratio p,, and (n) for multilayered cross-ply with CC2 boundary conditions

( Ry/H=100).
a | No. HSDT Love 's Discrepancy HSDT Love 's | Discrepancy
(L/Ry)=0.2 (%) (L/R1)=0.5 (%)
2 .2501 (9) .2618(9) 4.469 .0851(8) | .0887 (8) 4.058
10 4 .6167(8) .6282(8) 1.830 .1507(6) .1641(6) 8.165
6 | .7061(8) | .7141(8) 1.120 .1663(6) | .1791(6) 7.146
2 | .2681(9) | .2874(9) 6.715 .0924(7) | .0943(7) 2.014
30 | 4 .7015(8) .7153(8) 1.929 .1602(6) .1726(6) 7.184
6 .7601(8) .7905(8) 3.845 .1782(6) .1889(6) 5.664
2 | .4601(7) | .4812(7) 4.384 .1095(6) | .1153(6) 5.030
60 | 4 1.166(6) | 1.2116(6) 3.763 .2221(5) .2437(5) 8.863
6 | 1.3191(6) | 1.3409(6) 1.625 .2413(5) .2645(5) 8.771
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Conclusions;

Analytical solution for buckling of Loves
and third-order shell theories are applied to
cross-ply cone shells. Third-order shell theory
yields results close to those of Love shell
theory but it amost under predicts buckling
loads, the maximum discrepancy is (9.904%).
For simply supported shells buckling
parameter (py) changes directly with the
number of layers for same (a, (L/Ry)), aso
semi vertex angle has the same effect on the
buckling parameter for same (No. , (L/Ry)),
while this parameter changes indirectly with
(L/R;) for the same (a, No.). Buckling
parameter (p,) for clamped boundary
conditions is larger than that for simply
supported shells. The effect of semi vertex
angle on the buckling parameter of long
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