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Abstract 

The wavelet transform provides good and in 
many times excellent results when used as a 
basic block transform in many systems such 
as electronic, communication, medical and 
even chemical systems. The paper uses the 
wavelet packet transform to adjust the tap 
gains of the adaptive filter used in channel 
equalization and estimation. The results using 
the wavelet technique achieve good 
improvements in convergence time over the 
ordinary LMS algorithm. The two systems 
were compared on full mathematical and 
simulation basis. Learning curves for 
adaptive channel equalization and adaptive 
channel estimation using wavelet packet 
transform with different mother functions, 
different level decompositions, different step 
sizes, different levels of signal to noise ratio, 
different telephone channels and different 
filter sizes were compared with conventional 
LMS adaptive channel equalization and 
channel estimation. The simulation results 
carried out using the MATLAB package 
version 6.1, demonstrate the efficiency of the 
proposed technique.    

Keywords: Filters, Telephony.Waves  

1.  Introduction  
  The topic of adaptive filtering has evolved in 
the last forty years to become a solid 
framework in building many practical systems. 
The context of this study will be restricted to 

adaptive filters driven by the least mean square 
(LMS) adaptation algorithm, firstly proposed 
by Widrow and Hoff in 1960. This algorithm 
has been in use for many years in different 
engineering applications found in the fields of 
communications, control, biomedicine, radar, 
etc. The main advantages of such systems are 
their relative simplicity and their powerful 
ability to track the varying characteristics of 
the involved system.  However the major 
defect of these systems is the unpredictable 
behavior in their convergence to the final 
solution, such as slow convergence or no 
convergence of the filter [1].  
     As a suggested cure for the problems 
mentioned above, the wavelet packet transform 
is used to modify the input data streams fed to 
the filter. The goal of most modern wavelet 
research is to create a set of basis functions and 
transforms that will give an informative, 
efficient, and useful description of a function 
or signal. If the signal is represented as a 
function of time, wavelets provide efficient 
localization in both time and frequency or 
scale [2]. This analysis is derived from the 
wavelet transform in its classical scheme. 
(coefficient) calculation or adaptation. This 
study is performed by simulating the 
adaptation curves of such systems using 
various types of models of telephone channels. 
The results were evaluated and compared with 
those obtained from the conventional adaptive 
systems and with those obtained with different 
filter sizes.  
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2.The Discrete Linear System Model 

     The model of the employed system is 
shown in Fig.1. It is assumed to have a 
transmitter, a linear baseband transmission 
path, a sampler and a receiver. This model may 
represent a simple digital communication link. 
With simple variation, it can represent any 
other linear model that may be found in other 
fields such as control, digital signal processing 
(DSP), etc. 

     The transmitted information is expressed by 

a sequence of data symbols is , where is 

may represent any alphabet. In this work, we 
have adopted the balanced binary model with  

1,1is 1 

 

The is are statistically independent and 

equally likely to have any of their two possible 
values. The waveform tr at the output of the 

linear baseband channel is 

twiTthstr
i

i . 

 

2

 

Where w(t)is additive noise. Assuming full 
synchronization between the receiver and 
transmitter, the waveform tr is sampled once 

per data symbol at the time instant ti to yield 
the sample ri which is fed to the adaptive filter.    

Figure (1) Model of the employed system

 

where jThhiTrr ji

 

, and iTwwi . 

Thus the sampled impulse response of the 
linear baseband channel is given by the 

1g -component sequence H where  

ghhhH 10
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with z -transform of  

g

go zhzhhzH 1

1 5 

 

2.1 The LMS Adaptive Estimator 
     The adaptive channel estimator structure is 
shown in Fig. 2. This estimator uses the error 
in the estimated signal ie to adjust the tap 

gains ic of the filter C . The error at time 

instant iT is defined as [2,3]:  

iii rxe
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where ix is the estimated channel signal, 

which is givenb y:  

n

oj
jjii csx . 
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The Mean Square Error , which is given by:  
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should be minimized by calculating the 
gradient of the expected value of the square 
error with respect to the coefficients of the 
filter, which is given by [4]:  

n

c ccc 10 
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then the following quantity is computed:          
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Since 

 

is a quadratic function, it has a convex 
form in the multidimensional space 
representing the taps vector. Hence, a global 
minimum of this function at which the above 
derivatives are zero can be found. Using the 
gradient algorithm, the filter coefficients can 
be iterated to reach the optimum setting by 
using the equation [3]:   

ijioldjnewj escc .2,,

 

        ijioldj esc .2,

 

   11 

 

The rate of convergence towards the desired 
adjustment of the channel estimator depends 
upon the step size. Hence, the updating 
equations in vector form are given by:   

iii rxe

 

12 

  

SeCC ioldnew .
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where 2

  

ncccC 10

 

14 

  

niii sssS 1

 

15 

      

Figure(2) Adaptive channel  estimation 

 

2.2 The LMS Adaptive Equalizer 
     The linear equalizer [5, 6, 7] can be 
implemented as a linear feed forward 
transversal filter. The tap coefficients of this 
equalizer are given by the (n+1)- component 
sequence.

ncccC 10

 

16

 

with z-transform  

n
no zczcczC .. 1

1

 

17

 

The equalizer acts on the received samples in 
such a manner that the signals ir and ix are 

those present at instant iT. By the reception of 
a sample, the stored symbolsare shifted one 
place and the output at the instant iT is the sum 
given by:  

n

oj
jjii crx . 

 

18 

 

Since the sampled impulse response of the 
linear baseband channel is given by the (g+1)-
component sequence H ,the z-transform of the 
sampled impulse response of the equalized 
channel is given by zD , where   

zCzHzD .

 

19 

 

or alternatively, one can define the sequence 
D

 

by:  

gndddCHconvD 10, 

  

20 

 

where conv

 

is the convolution. 
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When exact equalization takes place, the 
sampled impulse response of the linear 
baseband channel and equalizer becomes:  

0001000yD            21 

 

where y

 

is a positive integer in the range 0 

to gn , which represents a delay of y

 

sampling instants in the equalized sampled 
impulse response. eq. (21) above cannot be 
satisfied exactly without having an infinite 
number of taps in the equalizer. 
     The Mean Square Error is defined as the 
expected value of the squared difference 
between the output from the adaptive filter and 
input signal. Considering the delay in 
transmission y , the Mean Square Error is 

given by:  

22 
  yiii sxe

 

22 

 

where .

 

is the expected value. 
     The adaptive linear equalizer structure is 
shown in Fig. 3. This equalizer uses the error 
in the equalized ie to adjust the tap gains ic 

of the filter C . The error at time instant iT is 
defined as [1,3]:  

yiii sxe                                       23 

 

where ix is the equalized signal that is 
given by: 

n

oj
jjii crx . 

 

24 

 

The same procedure for the adaptive channel 
estimator is applied here, yielding     

ReCC ioldnew .

 

25 

 

where  

ncccC 10

 

26 

 

and  

niii rrrR 1

 

27 

    

Figure (3) Adaptive channel equalization 

  

3.  The Wavelet Packet Analysis 
     The wavelet packet method is a 
generalization of wavelet decomposition that 
offers a richer range of possibilities for signal 
analysis. In wavelet analysis, a signal is split 
into an approximation and a detail. The 
approximation is then itself split into a second 
level approximation and detail, and the process 
is repeated. For a j-level decomposition, there 
are 1j possible ways to decompose or 

encode the signal as shown in Fig. 4.  

                                        
                          

Figure (4) Two-stage wavelet decomposition 
and the DWT analysis tree 

 

In wavelet packet analysis, the details as well 
as the approximations can be split. This yields 

j2

 

different ways to encode the signal. Fig. 5 
represents this decomposition.  
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Figure (5) Analysis tree for the two-stage      

 

wavelet packet decomposition (DWPT) 

 

Wavelet packet functions are designed by 

generalizing the filter bank tree that relates 
wavelets and conjugate mirror 

filters [1, 8]. The frequency axis division of 
wavelet packets is implemented with an 
appropriate sequence of iterated convolutions 
with conjugate mirror filters [8, 9, 10, 11]. Fast 
numerical wavelet packet decompositions are 
thus implemented with discrete filter banks [1, 
9, 12]. 
     The idea behind this decomposition can be 
approached by noting that the highpass filter 

nh1 gives the detail part of the signal dyadic 

decomposition, while the lowpass filter nh0 

represents the approximate part. This would 
give us great flexibility in decomposing the 
signals, as used in wavelet packet analysis.  

     The computation scheme for wavelet packet 
generation, is easy when using an orthogonal 
wavelet. It starts with the two filters of 

length N , denoted by nh0 and nh1 

corresponding to the reversed versions of the 
lowpass and highpass decomposition filters 

respectively divided by 2 . Now by 
induction, let us define the following sequence 
of   functions  Wn(t), n= 0,1,2, by [13, 14]:  
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where ttW0 is the scaling function and 

ttW1 is the wavelet function. Starting 

from the functions NntWn

 

, and 

following the same line leading to orthogonal 
wavelets, we consider the three-indexed family 
of analyzing functions (the waveforms) :  

ktWtW j
n

j
knj 22 2/

,,,

  

30 

 

where Nn

 

and Zkj, . 

The set of functions: ZktWW knjnj   ,,,, is 

the nj, wavelet packet. For each scale ,j 

the possible values of parameter n

 

are: 0, 

1, , 2j-1, and  

ZkktW              0,0

 

31 

 

4.  Model Structure for the Adaptive 
Systems Using the Wavelet Packet 
Transform 

The general setup of the proposed adaptive 
estimation filter has the form given    in     Fig. 
6,   while    the   adaptive equalizer filter has 
the arrangement given in Fig. 7. In the former 
figure the transmitted signal generated as a 
random sequence of {1, -1} is split into two 
equal numbers of samples by the action of the 
scaling filter h0(-n) and the wavelet filter h1(-
n). When the system consists of two or more 
decomposition levels, the two outputs from the 
scaling and wavelet filters are further 
processed by another set of these filters as 
shown in Fig.5    
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   The symbols H.and L denote highpass and 
lowpass filters respectively. This means that the 
output of the scaling filter is in fact a highpass 
response of the input signal and the wavelet filter is 
the lowpass side of the processed input signal. 
Between any two stages of the wavelet packet 
transform blocks there is a down sampling process, 
which reduces the number of samples by half. The 
term HL means that the samples are processed 
through highpass filter followed by lowpass one, 
while LH is the processing of the sequence  by 
lowpass filter followed by highpass one. Generally, 
the feeding input of the adaptive filter can be taken 
from any output stage of the wavelet packet 
transform block taking into consideration the 
convergence time of the adaptation.                    

    The attenuated signal from the output of 
telephone channel is added to an additive white 
Gaussian noise denoted by AWGN. To this point, a 
received signal ri is ready to estimate the mean 
square error of the LMS block which leads to the 
estimation of the total convergence time.  
     Finally, the error signal ei is generated by 
subtracting the equalized sample output of the 
adaptive filter xi from an output similar to the 
wavelet packet transform block but with an input 
signal ri. 
    The adaptive estimator shown in the block 
diagram of Fig. 6 is somehow similar to the 
adaptive equalizer shown in the block diagram of 
Fig. 7 with some differences represented by the 
input signal and location of the telephone channel 
and AWGN addition. 

  

Figure (6) General arrangement of adaptive channel estimator using the wavelet packet 
transform 
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The parameters of the channels used in the 
adaptive equalizer and adaptive estimator are 
shown in Tables 1 and 2 respectively, where n 
represents the number of adaptive filter taps, g 
is the number of telephone channel taps, y is 
the delay between the two sequences for the 
equalizer case and 

 

assigns the step size of 
adaptation.  

Table (1) Parameters of the 
estimation LMS filter 

  

Channel 

 

Ch1 Ch2 

     n 10 20 

    g 14 18 

 

    

 

0.0075 
0.005 
0.001 

0.0075 
0.005 
0.001 

    

Table (2) Parameters of the 
equalization LMS filter 

 

Channel

 

Ch1

 

Ch2

 

n 20 35 
g 14 18 
y 5 10 

  

0.0075 
0.005 
0.001 

0.0075 
0.005 
0.001 

  

5.  Simulation and Test Results  

     In the simulation, different families of 
wavelets were tested with different 
decomposition levels. Haar, Daubechies, 
Symlet, Morlet, and Coiflet wavelet families 
were tested, while decomposition levels of up 
to four have been used.    

Figure (7)  
General arrangement of adaptive channel  equalizer using the wavelet packet transform 
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     The given results show the learning curve 
of the adaptive filter in both its direct form 
(estimator) and inverse form (equalizer). Two 
distortion schemes, as related to two typical 
channels, have been used to generate the test 
data stream. Further details about such 
channels can be found elsewhere [6]. The 
transmitted stream is kept fixed as a random 

sequence of 1,1

 

with long repetition period. 

The block diagram of the ordinary LMS 
adaptive system as shown in Figs. 2 and 3 is 
used for performance comparison with the 
proposed wavelet packet adaptive system. The 
software implementation is carried out with 
Matlab 6.1. 
     The investigation of the effects on the 
learning curve covered the following 
parameters: The choice of the mother function 
(Haar, Daubechies, etc.); the number of the 
decomposition levels in the wavelet tree; the 
step size of the LMS algorithm; the signal to 
noise ratio (SNR = 30 dB and 40 dB); the type 
of the telephone channel (ch1, and ch2) and 
length of adaptation filter size. 
     In the case of different decomposition 
levels the results for channel 1 are shown in 
Fig. 8 for adaptive estimation and in Fig.9 for 
adaptive equalization. Figs. 8(a) and 9(a) show 
the learning curve with the error as a function 
of the number of iterations, while Figs. 8(b) 
and 9(b) show the same curves with the 
number of the received samples as the 
argument of the variation. The difference 
between the two presentations is crucial to the 
explanation of our conclusions. As shown, the 
difference illustrates itself for the case of the 
wavelet packet curve. This is so because any 
sample of the data in their wavelet packet 

representation comes out of j2

 

samples of the 
received data, where j is the level of the 
wavelet packet decomposition. Here, 
WPLMS1 and WPLMS2 are for 2 and 4 level 
decomposition respectively. 
     The results using this technique achieved 
good improvements in convergence time over 
the ordinary LMS algorithm. The change of 
mother function had little effect on the 
performance. It was found that the use of more 
than two decomposition levels leads to 
divergence, while the increase in step size 
speeds up the convergence. The improvement 

due to the WPLMS becomes more noticeable 
for higher levels of SNR.  

     The improvement in convergence time in 
the case of adaptive channel estimation using 
the WPLMS was nearly 42%, and in the case 
of adaptive channel equalization using the 
WPLMS it was nearly 33%. This demonstrates 
the validity and effectiveness of the proposed 
technique.   
     In the case of different mother functions in 
wavelet packet transform the results are shown 
in Fig. 10 and Fig. 11. On the other hand, 
Figs.12 and 13 show the convergence for 
different signal to noise ratios (SNR). 
It is clear from the results presented in Figs.8 

 

13 that the proposed algorithm performs better 
in channel 1. It has been found  that  the  
WPLMS with  channel 2 requires larger filter 
sizes and more iterations to give the same 
convergence  level as channel 1. This is 
because the level of distortion over channel 1 
is lower than that over channel 2.                               
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Figure(8) Learning curves of adaptive channel estimation over channel 1 with a step size = 
0.005 at SNR = 30 dB ; Variation of MSE with : 

 

(a) number of iterations (b) number of samples) 

            

                                                                                                     

Figure (9) Learning curves of adaptive channel equalization over Channel 1 with a step size = 0.005 
at SNR = 30 dB ;Variation of MSE with : 

 

(a)number of iterations,.(b) number of samples 
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Figure (10) Adaptive channel estimation 
over channel 2 using wavelet packet 

transform with SNR=40 dB and step size = 
0.0075 

      

Figure (11) Adaptive channel equalization 
over channel 2 using wavelet packet 

transform with  SNR = 40 dB and step size = 
0.0075 

       

Figure (12) Learning curves for the 
WPLMS algorithm used in adaptive 

channel estimation over channel 2 with step 
size = 0.0075 

      

Figure (13) Learning curves for the 
WPLMS algorithm used in adaptive  

equalization over channel 2 with step size = 
0.0075  
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6.  Conclusion 
     The main conclusion obtained from the 
current research is the suitability of the 
compact representation of the signal 
(represented by its wavelet packet transform) 
to obtain a stable adaptive filter. 
     Related to the above note, the suggested 
system necessitates the use of a separate 
wavelet transformer before the adaptive filter 
adapts itself. This arrangement is supposed to 
deliver one sample to the filter out of 2j input 
samples. So, each iteration in the adaptation 
process has 2j times the sampling period to 
perform the required calculations. This is an 
advantage for real time applications. 
     The obtained results indicate that the 
proposed system works well with both direct 
and inverse adaptive modeling on 
the condition that the noise levels should not 
be high, and the distortion produced by the 
channel is not severe. Also, results have shown 
that deeper decomposition may not be efficient 
in the adaptation process   
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