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Abstract

The wavelet transform provides good and in
many times excellent results when used as a
basic block transform in many systems such
as electronic, communication, medical and
even chemical systems. The paper uses the
wavelet packet transform to adjust the tap
gains of the adaptive filter used in channel
equalization and estimation. Theresults using
the wavelet techniqgue achieve good
improvements in convergence time over the
ordinary LMS algorithm. The two systems
were compared on full mathematical and
simulation basis. Learning curves for
adaptive channel equalization and adaptive
channeél estimation using wavelet packet
transform with different mother functions,
different level decompositions, different step
sizes, different levels of signal to noise ratio,
different telephone channels and different
filter sizes were compared with conventional
LMS adaptive channel equalization and
channe estimation. The simulation results
carried out using the MATLAB package
version 6.1, demonstrate the efficiency of the
proposed technique.

Keywords: Filters, Telephony.Waves

1. Introduction

The topic of adaptive filtering has evolved in
the last forty years to become a solid
framework in building many practical systems.
The context of this study will be restricted to

NUCEJ Vol.12 No.1

adaptive filters driven by the least mean square
(LMYS) adaptation algorithm, firstly proposed
by Widrow and Hoff in 1960. This algorithm
has been in use for many years in different
engineering applications found in the fields of
communications, control, biomedicine, radar,
etc. The main advantages of such systems are
their relative simplicity and their powerful
ability to track the varying characteristics of
the involved system. However the major
defect of these systems is the unpredictable
behavior in their convergence to the final
solution, such as slow convergence or no
convergence of thefilter [1].

As a suggested cure for the problems
mentioned above, the wavelet packet transform
is used to modify the input data streams fed to
the filter. The goal of most modern wavelet
research isto create a set of basis functions and
transforms that will give an informative,
efficient, and useful description of a function
or signal. If the signal is represented as a
function of time, wavelets provide efficient
localization in both time and frequency or
scale [2]. This anaysis is derived from the
wavelet transform in its classical scheme.
(coefficient) calculation or adaptation. This
study is performed by simulating the
adaptation curves of such systems using
various types of models of telephone channels.
The results were evaluated and compared with
those obtained from the conventional adaptive
systems and with those obtained with different
filter sizes.
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2.The Discrete Linear System Model

The model of the employed system is
shown in Fig.l. It is assumed to have a
transmitter, a linear baseband transmission
path, asampler and areceiver. This model may
represent a smple digital communication link.
With simple variation, it can represent any
other linear model that may be found in other
fields such as control, digital signal processing
(DSP), etc.

The transmitted information is expressed by
a sequence of data symbols{s }, where {s}

may represent any alphabet. In this work, we
have adopted the balanced binary model with

with z -transform of

H(z)=h,+hz'+--+hz* 5

2.1 The LM S Adaptive Estimator

The adaptive channel estimator structure is
shown in Fig. 2. This estimator uses the error
in the estimated signal e to adjust the tap

gains {c,} of the filter C. The error at time
instant i T is defined as [2,3]:

e=x-r 6

s, € {~1,+1} 1

The {s} are satisticaly independent and

equally likely to have any of their two possible
values. The waveform r(t) at the output of the

linear baseband channel is

where X is the estimated channel signd,
whichisgivenby:

s 7

i

Xi:

n
j=

j=0

r(t)zzi“si Nt —iT)+wt) 5

Where w(t)is additive noise. Assuming full
synchronization between the receiver and
transmitter, the waveform r(t) is sampled once
per data symbol at the time instant t; to yield
the sample r; which is fed to the adaptive filter.

The Mean Square Error ¢ , which is given by:

e o —rf]
=E[x -r)x" -r')]

=[x x" - xn -x"x 41

Linear baseband
Transmit channel
ted
Si_, Transmi ransmissi
tter n
w(t)
AWGN

should be minimized by calculating the
gradient of the expected value of the square
error with respect to the coefficients of the
filter, which is given by [4]:

Figure (1) Model of the employed system

where r =r(iT),h, =h(jT) and w =w(iT).
Thus the sampled impulse response of the
linear baseband channel is given by the
(g + 1) -component sequence H where
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then the following quantity is computed:
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Since ¢ isaquadratic function, it has a convex
form in the multidimensional space
representing the taps vector. Hence, a global
minimum of this function at which the above
derivatives are zero can be found. Using the
gradient algorithm, the filter coefficients can
be iterated to reach the optimum setting by
using the equation [3]:

Figure(2) Adaptive channel estimation

2.2 The LM S Adaptive Equalizer

The linear equalizer [5, 6, 7] can be
implemented as alinear feed forward
transversal filter. The tap coefficients of this
equalizer are given by the (n+1)- component
sequence.

Cj new = Cj aid —OCE[Z% -QJ

—205 ;8§ 1

=Cj od

C:[Co G "Cn] 16

with z-transform

The rate of convergence towards the desired
adjustment of the channel estimator depends
upon the step size. Hence, the updating
equations in vector form are given by:

C(z)=c,+c,.z ' +--+c,.z" | V7

The equalizer acts on the received samplesin
such amanner that the signals r, and x are

those present at instant iT. By the reception of
asample, the stored symbolsare shifted one
place and the output at theinstant i T is the sum
given by:

n
X =1 18
j=0

Since the sampled impulse response of the
linear baseband channel is given by the (g+ 1)-
component sequence H ,the z-transform of the
sampled impulse response of the equalized
channel is given by D(z), where

D(z)=H(z2)C(2) 19

e =X —r, 12
Cnew = Cold Aq S 13
where A = 2

C= [Co C Cn] 14
S: [Si Sl—l “Si—n] 15
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or aternatively, one can define the sequence
D by:

D=conv(H,C)=|d, d,---d,,] 20

where conv isthe convolution.
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When exact equalization takes place, the
sampled impulse response of the linear
baseband channel and equalizer becomes:

D,=[0 0--0 1 0 0-0] |2

where Y is a positive integer in the range 0
to n+g, which represents a delay of vy
sampling instants in the equalized sampled
impulse response. eg. (21) above cannot be
satisfied exactly without having an infinite
number of tapsin the equalizer.

The Mean Square Error is defined as the
expected value of the squared difference
between the output from the adaptive filter and
input signal. Considering the delay in
transmissiony, the Mean Square Error is
given by:

Received
Sample
I { i-n
DT BT T
C c AN Cn
N} N} ualized
Z Sample
_+
e .
LMS i ansmitted
Algo Sample

Figure (3) Adaptive channel equalization

o= | el = llx -5, [ 2

Where E[] is the expected value.

The adaptive linear equalizer structure is
shown in Fig. 3. This equalizer uses the error
in the equalized e to adjust the tap gains {c, }
of the filter C. The error at time instant iT is
defined as[1,3]:

e =X-S_ 23

3. TheWavelet Packet Analysis

The wavelet packet method is a
generalization of wavelet decomposition that
offers a richer range of possibilities for signal
analysis. In wavelet analysis, a signa is split
into an approximation and a detail. The
approximation is then itself split into a second
level approximation and detail, and the process
is repeated. For a j-level decomposition, there
are j+1 possible ways to decompose or

encode the signal as shownin Fig. 4.

where x, isthe equalized signal that is
given by:

X‘:Z ro_,.c, 24

The same procedure for the adaptive channel
estimator is applied here, yielding

Cnew = Cold - Ae| R 25
Figure (4) Two-stage wavelet decomposition
where and the DWT analysistree
= = In wavelet packet analysis, the details as well
C = |c, C. C ] 29 as the approximations can be split. This yields
2’ different ways to encode the signal. Fig. 5
and represents this decomposition.

R = rr, ro_,- I, j 27
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Input
signal LH

W, (t) = ﬁgho(k)wn(zt k)| 2

W, ()= JEZ h, (KW, (2t - k) 29

where W,(t)= g(t) is the scaling function and
W,(t)=w(t)is the wavelet function. Starting
from the functions (W, (t)neN) and

following the same line leading to orthogonal
wavelets, we consider the three-indexed family
of analyzing functions (the waveforms) :

Figure (5) Analysistreefor the two-stage
wavelet packet decomposition (DWPT)

W, . )=2""2w (27t-k) | 5

Wavelet packet functions are designed by

generalizing the filter bank tree that relates
wavel ets and conjugate mirror

filters [1, 8]. The frequency axis division of
wavelet packets is implemented with an
appropriate sequence of iterated convolutions
with conjugate mirror filters [8, 9, 10, 11]. Fast
numerical wavelet packet decompositions are
thus implemented with discrete filter banks [1,
9,12].

The idea behind this decomposition can be
approached by noting that the highpass filter
h,(n) gives the detail part of the signal dyadic
decomposition, while the lowpass filter h,(n)
represents the approximate part. This would
give us great flexibility in decomposing the
signals, as used in wavelet packet analysis.

The computation scheme for wavel et packet
generation, is easy when using an orthogonal
wavelet. It starts with the two filters of
lengthN, denoted by h(n) and hy(n)
corresponding to the reversed versions of the
lowpass and highpass decomposition filters

respectively divided by «2. Now by
induction, let us define the following sequence
of functions W,(t), n=0,1,2,... by [13, 14]:
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where ne N and(j,k)eZ .
The set of functions: W,, =W, (t), ke Z) is
the (j,n) wavelet packet. For each scae |,

the possible values of parameter n are: O,
1,...,2-1,and

Wy, =op(t-k) keZ 31

4. Model Structurefor the Adaptive
Systems Using the Wavelet Packet
Transform

The general setup of the proposed adaptive
estimation filter hasthe form given in  Fig.
6, while the adaptive equalizer filter has
the arrangement given in Fig. 7. In the former
figure the transmitted signal generated as a
random sequence of {1, -1} is split into two
equa numbers of samples by the action of the
scaling filter hy(-n) and the wavelet filter hy(-
n). When the system consists of two or more
decomposition levels, the two outputs from the
scaling and wavelet filters are further
processed by another set of these filters as
shownin Fig.5
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Figure (6) General arrangement of adaptive channel estimator using the wavelet packet
transform

The symbols H.and L denote highpass and
lowpass filters respectively. This means that the
output of the scaling filter is in fact a highpass
response of the input signal and the wavelet filter is
the lowpass side of the processed input signal.
Between any two stages of the wavelet packet
transform blocks there is a down sampling process,
which reduces the number of samples by half. The
term HL means that the samples are processed
through highpass filter followed by lowpass one,
while LH is the processing of the sequence by
lowpass filter followed by highpass one. Generally,
the feeding input of the adaptive filter can be taken
from any output stage of the wavelet packet
transform block taking into consideration the
convergence time of the adaptation.

The attenuated signa from the output of
telephone channel is added to an additive white
Gaussian noise denoted by AWGN. To this point, a
received signal r; is ready to estimate the mean
square error of the LMS block which leads to the
estimation of the total convergence time.

Finally, the error signal e is generated by
subtracting the equalized sample output of the
adaptive filter x; from an output similar to the
wavelet packet transform block but with an input
signd r;.

The adaptive estimator shown in the block
diagram of Fig. 6 is somehow similar to the
adaptive equalizer shown in the block diagram of
Fig. 7 with some differences represented by the
input signal and location of the telephone channel
and AWGN addition.
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Figure (7)
General arrangement of adaptive channel equalizer using the wavelet packet transform

The parameters of the channels used in the
adaptive equalizer and adaptive estimator are
shown in Tables 1 and 2 respectively, where n
represents the number of adaptive filter taps, g
is the number of telephone channd taps, y is
the delay between the two sequences for the
equalizer case and A assigns the step size of
adaptation.

Table (1) Parameters of the
estimation L M Sfilter

Chl | Ch2
Channel
n 10 20
g 14 18
0.0075 | 0.0075
A 0.005 | 0.005
0.001 | 0.001
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Table (2) Parameters of the
egualization L M Sfilter
Chli Ch2
Channel
n 20 35
g 14 18
y 5 10
0.0075 | 0.0075
A | 0005 | 0.005
0.001 | 0.001

5. Simulation and Test Results

In the simulation, different families of
wavelets were tested with  different
decomposition levels. Haar, Daubechies,
Symlet, Morlet, and Coiflet wavelet families
were tested, while decomposition levels of up
to four have been used.
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The given results show the learning curve
of the adaptive filter in both its direct form
(estimator) and inverse form (equalizer). Two
distortion schemes, as related to two typica
channels, have been used to generate the test
data stream. Further details about such
channels can be found elsewhere [6]. The
transmitted stream is kept fixed as a random
sequence of {1,—1} with long repetition period.
The block diagram of the ordinary LMS
adaptive system as shown in Figs. 2 and 3 is
used for performance comparison with the
proposed wavelet packet adaptive system. The
software implementation is carried out with
Matlab 6.1.

The investigation of the effects on the
learning curve covered the following
parameters. The choice of the mother function
(Haar, Daubechies, etc.); the number of the
decomposition levels in the wavelet tree; the
step size of the LMS agorithm; the signa to
noise ratio (SNR = 30 dB and 40 dB); the type
of the telephone channel (chl, and ch2) and
length of adaptation filter size.

In the case of different decomposition
levels the results for channel 1 are shown in
Fig. 8 for adaptive estimation and in Fig.9 for
adaptive equalization. Figs. 8(a) and 9(a) show
the learning curve with the error as a function
of the number of iterations, while Figs. 8(b)
and 9(b) show the same curves with the
number of the received samples as the
argument of the variation. The difference
between the two presentations is crucial to the
explanation of our conclusions. As shown, the
difference illustrates itself for the case of the
wavelet packet curve. This is so because any
sample of the data in their wavelet packet
representation comes out of 2’ samples of the
received data, where j is the level of the
wavelet  packet  decomposition.  Here,
WPLMS1 and WPLMS2 are for 2 and 4 level
decomposition respectively.

The results using this technique achieved
good improvements in convergence time over
the ordinary LMS agorithm. The change of
mother function had little effect on the
performance. It was found that the use of more
than two decomposition levels leads to
divergence, while the increase in step size
speeds up the convergence. The improvement
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due to the WPLMS becomes more noticeable
for higher levels of SNR.

The improvement in convergence time in
the case of adaptive channel estimation using
the WPLMS was nearly 42%, and in the case
of adaptive channel equalization using the
WPLMS it was nearly 33%. This demonstrates
the validity and effectiveness of the proposed
technique.

In the case of different mother functions in

wavelet packet transform the results are shown
in Fig. 10 and Fig. 11. On the other hand,
Figs.12 and 13 show the convergence for
different signal to noise ratios (SNR).
It is clear from the results presented in Figs.8 —
13 that the proposed agorithm performs better
in channel 1. It has been found that the
WPLMS with channel 2 requires larger filter
sizes and more iterations to give the same
convergence level as channel 1. This is
because the level of distortion over channdl 1
islower than that over channel 2.

Adaptive Discrete Filters 8
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Figure (9) Learning curves of adaptive channel equalization over Channel 1 with a step size = 0.005
at SNR =30 dB ;Variation of M SE with :
(@)number of iterations,.(b) number of samples
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Figure (10) Adaptive channel estimation
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Figure (12) Learning curvesfor the
WPLM S algorithm used in adaptive
channel estimation over channel 2 with step
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Figure (11) Adaptive channel equalization
over channel 2 using wavelet packet
transform with SNR =40 dB and step size =
0.0075

Figure (13) Learning curvesfor the
WPLM S algorithm used in adaptive
equalization over channel 2 with step size =
0.0075
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6. Conclusion

The main conclusion obtained from the
current research is the suitability of the
compact representation of the signa
(represented by its wavelet packet transform)
to obtain a stable adaptive filter.

Related to the above note, the suggested
system necessitates the use of a separate
wavelet transformer before the adaptive filter
adapts itself. This arrangement is supposed to
deliver one sample to the filter out of 2 input
samples. So, each iteration in the adaptation
process has 2 times the sampling period to
perform the required calculations. This is an
advantage for real time applications.

The obtained results indicate that the
proposed system works well with both direct
and inverse adaptive modeling on
the condition that the noise levels should not
be high, and the distortion produced by the
channel is not severe. Also, results have shown
that deeper decomposition may not be efficient
in the adaptation process
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