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AbstracT

The absence of universaly accepted
solutions in the structural concrete codes for
the design of reinforcement in shells gives rise
to the problem of calculating the required
reinforcement in these structures. The constant
development of the computer’s performance
and storage capacity combined with the
powerful numerical methods revea the need
for a standard procedure to design shells
subjected to membrane and flexural forces.

In this paper, the solution for the design
of the required reinforcement in concrete shells
is presented based on a complete iterative
computational algorithm to design shell
elements subjected to combined membrane
forces and bending moments.

In the design equations, the reinforcement
will contribute to tension and the concrete
compression struts parallel to the crack
direction will contribute to compression. The
reinforcement is assumed to have two
orthogonal layers placed in the top and bottom
surfaces  with appropriate covers. Each
reinforcement layer has reinforcing bars placed
orthogonally. For the concrete compression
struts, the stress is assumed to be uniformly
distributed in the depth of Whitney’s stress
block.

This design algorithm is achieved by
developing a design code (DRCSH) based on
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a complete iterative computational algorithm.
This program can be used as a stand-alone
version, to determine the load carrying
capacity of critica points in reinforced
concrete panels, plates and shells; and to verify
the design code on the element level, five
experimental models are designed. The
designed elements give calculated ultimate
strengths from 7 to 18% higher than test results
values, except one model, which confirms the
adequacy of the design agorithm, and the
developed design code.
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1. Overview of Design Methods

for Reinfor ced Concrete

Shdlls:

At any point in the shell, as shown in Fig.
(1), two different types of interna forces may
occur simultaneously; those associated with

membrane action (N, , N, and N, ) and
those associated with bending of the shell (
M,, M ,andM, ).

Even though shells resist the applied forces
primarily through in-plane membrane action,
bending is still induced on the shell. Therefore,
a more rational approach to the design process
is to simultaneously include combined
membrane forces and bending moments.
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Figure (1) Applied forces and moments on an element

Currently, designers first perform the
design with membrane forces only and later
provide the reinforcement for bending in
particular locations, such as near boundaries or
near structural discontinuities. Design of
reinforcement in shells for a combined
membrane and bending state of stress is a
complex problem, and till now, the complete
solution for this problem has not been
presented in the international codes and does
not include any advance in this particular field.

The ACI-Code (ACI 318M-05) [1],
contains a chapter on shells and folded plates
without any clear design algorithm but only
mentions that “any method of design which
assures sufficient strength with equilibrium is
considered applicable”.

The Model Code 90 (“CEB-FIP”1993)
[2, 3], suggests the use of a three-layer model,
“the plate may be modeled as comprising three
layers. The outer layer provides resistance to
the in-plane effects of both the bending and the
in-plane loading, while the inner layer
provides a shear transfer between the outer
layers”. The proposed model is only
approximate as it does not model the different
lever arms for concrete and steel forces. In
addition, it does not give any procedure to
design the element and it only states that an
exact determination of the lever arm values for
the internal forces “is complex and may
require iteration since they depend on the
levels of reinforcement and on the thickness of
the concrete layers”.

The Euro code 2(“Design” 1991) [2,3],
suggests a different method using the usual
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expressions for plates subjected to in-
plane loading and dlabs to bending and does
not include any provisions for shells. These
simplified expressions of genera use are not
safe and they are inconsistent, as shown by
Gupta[4].

A general solution, however, has started
to evolve in 1986 by Gupta [4]. Gupta
developed an iterative tria-and-error design
method using the principle of minimum
resistance by dividing the shell into two
imaginary concrete layers within each
orthogonally placed reinforcing layer. He only
considered the case in which reinforcement is
needed in both outer layers; thus the method is
inappropriate for any other case. With respect
to the need of reinforcement four different
cases must be analyzed and treated separately:
reinforcement needed only in the bottom layer;
reinforcement needed only in the top layer; and
no reinforcement needed. Also, he showed a
few sample design problems on the element
level.

In 1993, Lourenco and Figueiras [2,3]
presented an automated design of reinforced
concrete plates and shells in accordance with
the Model Code 90. The authors assumed

initial lever aam d =0.8h, referring that an

iterative procedure might be adopted to
calculate the lever arms, but no additional
provisions is given. They implemented the
design equations on a computer program, and
performed several design examples, comparing
the results with optimization module capable
of minimizing the sum of the tensile forces
and, hence, the required reinforcement. They
found that the results changed and the
reinforcement decreased by (3.5-6.0 %).
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In 2004, Min [5] developed a complete
iterative  computational  algorithm  that
accurately calculates the internal lever arms to
design a plate or a shell element subjected to
combined membrane forces and bending
moments, in which the shell element is
analyzed globally and not as two membrane
outer layersin the three-layer model.

The algorithm is developed on the basis
of Gupta’s derivation (1986). Gupta obtained
the design equations partly for the case of
reinforcement required in the top and bottom
layers, simultaneously. Three more cases are
developed for the reinforcement required only
in the bottom layer, for reinforcement required
only in the top layer, and for no reinforcement
required.

Min in his paper presented the complete
design algorithm for the two cases:
reinforcement required in both top and bottom
layers, and reinforcement required in the
bottom layer, the other two cases
(reinforcement required in the top layer, and
no reinforcements required) are derived and
presented in the present work in a similar way
on the basis of Gupta’s and Min’s derivation to
reach the aim to provide a complete and clear
design algorithm for reinforced concrete shells.
Finally, the design code (DRCSH) is used to
design severa experimental examples, and to
compare the present design algorithm with
those for other design teams (i.e., Gupta,
Lourenco and Figueiras and Min)

2 Formulation of Design Equations:
A typicad shell element subjected

simultaneously to membrane forcesN, , N ,

N,, and bending and twisting momentsM

NUCEJ vol.11, No.3,2008

M, ,M,, per unit length, is shown in Fig.

(1. In the ultimate state, the applied forces
have to be in equilibrium with the tensile
forces in the reinforcement, and the
compressive  forces in the concrete
compression strut have to be parallel with the
crack direction. In this limit state, concrete
stress in compression is assumed to be
distributed uniformly in the depth of
Whitney’s stress block. The tensile strength of
concrete was ignored as in the current design
philosophy (ACI 318M-05) [1].

Figure (2) shows a shell element with
reinforcement represented as smeared layers.
A rigid-plastic behavior is assumed for the
reinforcement. It is assumed that the
reinforcement consists of two orthogonal
layers placed at the top and the bottom
surfaces, with appropriate covers, and that
each orthogonal reinforcement layer has
reinforcing bars in the x-and y-directions,
respectively. The capacity of these
reinforcements can be designated as

Ny » Ny Ny and NJ where subscripts

x and y designate the directions, and t and b
stand for the top and bottom layers,
respectively.

At the limit state, a vertical plane of
crack, whose normal makes an angle &, and

6, with the x-axis in the xy-plane, penetrates

the top and bottom surfaces, Fig. (3). The
concrete is in compression paralel to this
crack; it is assumed that the depth of

Whitney’s stress block is @ and a, ,
respectively.
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Figure (3) Crack directions[5]

2.1Reinforcement required in top

and bottom layers:

The total forces and moments resisted by
the reinforcement in the x- and y-directions are
given by

N, = Ny + Ny 1
Ny = NJ + Nj
VRESTR
M =N, + NG hy,

The average compressive stress parallel
to the crack direction in the concrete block is

f ©the force and moment resultants of the top
and bottom concrete blocks are
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tc =—q ftc and Mtc = _htNtc €
NS =-a,f° and MS=-hN|%
where;
h is the total thickness
of the shell
element
(h-a)
ht 2
(h-a,)
hb 2
& and a, are the depths of stress
blocks

The resisting forces and moments given by
Egs. (1-4) should be in equilibrium with the
applied forces and moments. Therefore, the
equilibrium equations for a unit cracked
element in the x- and y-directions are
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N, =N; +N°sin* g + NS sin” g, ,
N, =N; +N¢cos’ 4 + N; cos’ g, and | 5
N,, =—Nf sing, cosf, — N; sing, cosg,

in which

h(bNx — Mx

Nyt = Ny =7 7 12
h, | T
-M +M
M,=Mj;+MFsin?6, + Msin? 4, I\LM:h’N“/ 2 and nybth“/ =
M, =M} + M cos? 4, + M¢ cos? 6, and| © L L
M, =-M{sin6, cosd, — My sing, cosé,
and
c heh O iy
Therefore, the system of six equations, Xt h, ; xtb h,
Egs. (5) and (6), contain eight unknowns: four h h +h
reinforcement capacitiesN,,N* , N and Coot = o ,  Cyp=—t
cap xt Ny Ny h, h, 13
N, ; crack directions &, and 6,; the depths Cp - hy, + Co - hyp =1y
of compressive stress block &, and a,. hy hy
Ideally, these quantities should be selected so c hy —h and Co = hy +h,
that the total capacity of reinforcement is as yot =" ybb =
minimum as possible. As discussed by Gupta 4 4
[4] and Lourenco and Figueiras [2] the initial
g —wn) o - where,
valuesof 6, =6, =+ A give a satisfactory h =h,+h,
result with @, =@, = 0.2h. These values are to hy = hyt + hyb
be adjusted by an iterative procedure until the The compressive forces in concrete can
equilibrium conditions are satisfied. be obtained by Egs. (.7) and (12), and are
From Egs. (3) to (6), the top and bottom given by
concrete block resultants can be written as
2N 2N
. 2Ny -M,) ~N=—2  and -Nf=—22 |14
-N; = : ,and sin26, sin26,
h, sin26,
7
NS — 2(n,N,y —M,) When the values of 6, or 6, are very
b h.sin26, small, then the compressive forces in Eq. (14)
will be very large and the iterative numerical
Where: method will become unstable.
’ (a +a,) Lourenco and Figueiras [2] used
h, =h- & +a) 10" < (6,,6,) < 80" criterion for the purpose
2

The reinforcement capacities of top and
bottom layers in the x- and y-orthogonal
directions are given by Egs. (1)-(7) as

Ny =N, +N,,C tang +N,,C . tand, |8

N;b = Nxb + nythbt tan@t + nybCXbb tan@ 9

of avoiding numerical instability. Min [5]
found that all the elements converge within the

range of -5 <(6,,6,) <5".
Therefore, he set(6,,6,) =0
|(0t,9b)| <5’ to avoid numerical instability.

maximum

when

In the cases of 6, or6), are set to zero, then

Ny =N, +N,,C

wCyi €O, + N, Cp, COt6,

10

wand N are equal to zero, respectively,
Fg. (14) can expressed, as

Ny = Ny, +N,,C cotd, + N, ,C,, coto,

11
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N M, —h,, —(h,—h, )N; cos 6, 15
h+h,

Ne- M, —h, —(h —h,)N¢ cos 4 16
-h,-h,

When the calculated values of Egs. (8) to
(11) are negative, then no reinforcement is
required in that direction. One can set the
reinforcement capacity in that direction to zero

and recalculate the values of &, or . Miniin
his study implemented the minimum
reinforcement area (A, ;) of ACI 318M-05

[1] for limiting crack width and spacing under
the service load condition. In each direction,

the minimum capacity N .. can be obtained

; in T . .
by N, = Asmin % , where f istheyield
stress of reinforcement.

Therefore, in Eq. (8), when N, < N
then set N, = N,
value as
o tan™ (N7, — Ny — N, .C,ip tané,

) =
N, Co 7

min ?

, and calculate a new 6,

NS =—af’ and MS=-hN§ é
where;
h is total thickness of
the shell element
_(h-a)
2

The bottom layer concrete forces are N5,
andNj in the x and y-directions

respectively, and the shear forces N, . Then,
the equilibrium equations become

N, =N +NS +N°sin’ g, ,
N, = N; + N, + N¢ cos’ 6, and

N,, =—N; sing, cos, — N, sing, cosy,

20

M,=M;+MS +M°sin®é, ,
M, =M +M +MScos’6, and |2

M, =MZg, —M¢sing, cosé,

inwhich

Similarly, from Egs. (9)-(11) if N, , N,

*
min *

and N;b are smaller than N
N; and N;sz;;m,

obtain &, or &, values accordingly.

then N, ,

respectively, and

2.2Reinforcement required only in
top layer:

Reinforcement is required only for the
top layers; thus, the total forces and moments
resisted by the reinforcement in the x- and y-
directions can be expressed as

N, =N,
N’ =N?
y yt 8
M:=-N,h,
M; :—N;hyt

The force and moment resultants of the top
concrete block are
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M;b = th;:b )
M3 =hNg and 22
M)Syb :_htN:(:yb

Therefore, the system of six equations,
Egs. (20) and (21) contains eight unknowns:

two reinforcement capacitiesN, and N,
crack direction &, depths of compressive
stress blocks @ and a,, and bottom layer

c c c
concrete forces Ny, Ny and N, From

Egs. (19)-(21), the top concrete block resultant
can be written as,

2(hN_—M

‘ h, sin 26,

The principal force of the bottom layer
and the depth of the compressive stress block
can be expressed, respectively, as
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I\Emzzl\tb"z‘l\cbi (I\Eb;l\cbj +(I\Eyt)2

Ne
fy

24

a):

From Eq. (25), if N, is smaler than

N, then N, =N, ,and6, iscaculated

%7

min * min *

As before, the minimum reinforcement
aea (A ,) of ACI 318M-05 [1] was
implemented. Therefore, with the minimum
reinforcement capacity N in the bottom

layer, and using Egs. (18)—(23), the tensile
steel forces developed at the top layer can be
given as,

Ny =N +N, o tang + D, N7 and .
NG, =N, + N, cotg) + D, N5y,
in which
M AW
Ve T,
_hN—M, _hN,~M, |26
VT e,
:M’ andD:M
h,+h, " h+h,

Also setting 6, = 0° when |9t| <5’to
avoid numerical instability, then N7 = 0, and
N, isexpressed as

M. —-hN
_Nt":yh—h"y 27

C
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et:tan—l([ N +(1 Dxt)len]J 28
nyu

Similarly, when N_is smaller than

N, then N =N~

as,

and 6, iscalculated

min ? min ?

NI .
[-N, +@-DON:.] | o

0, = tan‘l(

The design equations for the
reinforcement required only in the bottom and
no reinforcement required are omitted here,
and the complete design algorithms for the
four cases are presented in detailsin Ref. [6]

3 Verification Examples

The design algorithms are implemented
in design code DRCSH (standing for: Design
of Reinforcement in Concrete SHéll)
developed in the present work, and to verify
the design code on the element level severa
“design and experimental” examples are
designed and compared with those of other
design teams as shown in the next sections.

Design examples:
o Gupta’sdesign problem:

Gupta [4] showed a design example
problem in the case of reinforcement required
in the top and bottom layers, simultaneously.
The design variables of Gupta’s example
(which are the only input data required for
DRCSH) aregivenin Table (1).
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Table (1) Design variables of Gupta’s example.

(1000 11/ in.)

N, = -350.16 kN/ m (-2000 I/ in); N, =297.636 kN/ m. (1700 b/ in); N, =175.08 kN/ m.

M, =-60.048 kN.m/ m (-13500 Ib-invin.); M, =12.0096 kN./ m (2700 lb-invin); M, =0.8896
KN.m/ m (200 Ib-invin.)

f ©=6.895 MPa(1000psi) ; T, = 41.37 MPa (60000 psi) ; N= 0.254m (10in)

0.1016m.

Initially assume & = @, =0.2h=0.0508m,, 6, = 6,=45and h,, = h, =h, =h =

As shown in Table (2) the presented
design code produce approximately the same
total reinforcement capacity of Gupta’s result

with very small minimum reinforcement ratio,
the total reinforcement capacity is increased
only by 2419% with respect to Gupta’s
results.

for minimum reinforcement ratio (N .. =0.0),

Table (2) Comparison of the designs with and without setting minimum reinfor cement ratios and
the Gupta’sresult

Gupta’s Result Present Study
N :nin N :nin
=0.0 =13.131
kN/m

No. of 6 6
iterations
a, (m) 0.0254(1.0in) 0.021 0.0204
a, (m) 0.0762(3.0in) 0.077 0.0792
0,() 45,00 45,00 45,00
0,() 45.00 78.45 78.76

N, 229.179(13091b/ in) 229.447 233.049
(KN/m)

N yt 167.90(95910/ in) 167.591 167.024
(KN/m)

N, 0.0 0.0 13.131
(KN/m)

N ;b 223.051(12741b/ in) 222.492 221.959
(kN/m)

Sum of 620.13(3542Ib/ in) 619.530 635.163
Tensile

Forces

layers, simultaneously, the other one for a case
of reinforcement required only in the top layer.
Then, the resulting reinforcements in this work
have been compared with those obtained by
Lourenco and Figueiras [2] and with their
optimization module [2] capable of

. Lourenco and Figueiras’s design
problem:
Lourenco and Figueiras [2] showed two
design examples, one for a case of the
reinforcement required in top and bottom
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minimizing the sum of tensile forces and, The design variables of the first design
hence, the required reinforcement. case (two tensile layers) are given in Table (3),

Table (3) Design variables of L ourenco and Figueiras’sfirst design problem

N, =-200kN/m; N =300kN/m.; N, =75kN/m.

M, =-60kNm/m.; M, =40kN m/m; M, =-200 kN m/m.

f =734 MPa; f, =348 MPa; h=02m

Initially assume &, = @, =02h=004m, 6,= 6, =45 and

h, =h,=h,=h, = o00sm.

A comparison of the design for this case obtained by Lourenco and Figueiras, and very
by Lourenco and Figueiras [2] and their close to the reinforcement forces provided by
optimization module with the present design the optimization module.

code DRCSH is given in Table (4) and shows
that the present design code provides tensile
forces in the reinforcement less than those

Table (4) Comparison with the designsresults of L ourenco and Figueiras’sfirst design problem

Lourenco and Figueiras’s Present study

Design Optimization

results module
No. of - 7
iterations
a, (m) 0.0495 - 0.490
a, (m) 0.0816 - 0.075
6,() 45.00 45.6 45.00
6, () -79.6 -78.9 -78.89
N 526.8 509.0 505.573
(KN/m)
N, 79.0 724 75.862
(KN/m)
N, 34.7 0.0 0.0
(KN/m)
N;, 422.5 422.8 422.915
(KN/m)

The design variables of the second design
case(compression in top layer) are given in
Table(5),

NUCEJ vol.11, No.3,2008 Reinforcement Design Algorithm 390




Table (5) Design variables of L ourenco and Figueiras’s second design problem

N, =-200kN/m; N, =300kN/m.; N, =75kN/m.

M, =60kN m/m.; My:40kNm/m.; Mxy:-ZOKNm/m.

f =734 MPa; f, =348 MPa; h=02m

Initially assume @, = @, =0.2h=0.04m, ;=6 =45 and
h, =h, =h,=h, = 008m.

A comparison of the design for this case by
Lourenco and Figueiras [2] and their
optimization module with the present design
code DRCSH is given in Table (6), which
shows that the present design agorithm

provides tensile forces in the reinforcement
which are in agreement with those obtained by
Lourenco and Figueiras and the optimization
module

Table (6) Comparison of the designsresults of L ourenco and Figueiras’s second design problem

Lourenco and Figueiras’s Present study
Design Optimization
results module
No. of - 5
iterations
a, (m) 0.0474 - 0.048
a, (m) 0.0236 - 0.015
'9t 0 - - 71.11
ab 0) - -44.6 -45.0
* 0.0 0.0 0.0
N xt
(kN/m)
* 0.0 0.0 0.0
N yt
(kN/m)
N* 377.6 377.1 378.787
xb
(kN/m)
N* 493.7 494.2 494.206
yb
(kN/m)

Experimental examples:

Several experimental examples are
designed and performed with nonlinear
inelastic analysis [6] to show the adequacy of
the design equations. If the calculated ultimate
strength is larger than the ultimate strength
obtained from the test, then the design method
can be considered satisfactory, The
experimental examples are: (1)Marti et a.’s[7]
slab dements ML 7 and ML9 subjected to
torsional moments, (2) Polak and Vecchio’s
[8] shell elements SM1, SM2 and SM3
models.

NUCEJ vol.11, No.3,2008

Table (7) shows a comparison of steel
ratios between the origina tested specimen,
given by the Lourenco-Figueiras’s design [3],
given by Min’s design [5] and those obtained
by the present design code DRCSH. As shown
in Table (7), the present design code provides
reinforcement capacity that are amost
identical to those obtained by Min [5].

Table (8) shows a comparison of ultimate
strength obtained from the test and that
calculated by the nonlinear inelastic analysis
[6]. The designed elements give calculated
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the mode and the behavior of it is somewhat
similar to norma steel structure behavior,
which confirms the adequacy of the design
algorithm, and the developed design code.

ultimate strengths from 7 to 18% higher than
test results values, except SM2 model because
the nonlinear anaysis failled to find a
convergence due to a very large deformation of

Table (7) Comparison of steel ratiosfrom original tested specimens, from design teams and from
present design code (%)
Top layer (Sted ratio) Bottom la
Models Design teams
x-dir. y-dir. x-dir.
Marti et al [7] 0.25 0.25 0.25
Loyrenco and Figueirag[3] 0.25 0.25 0.25
ML7 Minisl 0.26 0.26 0.26
esent study 0.25 0.25 0.25
Marti et al [7] 1.00 1.00 1.00
ML 9 k/cl)yrenco and Figueirag[3] 1.21 1.21 1.21
Prgé?\]t sud 0.96 0.96 0.96
y 0.95 0.95 0.95
Polak and Vecchio [8] 1.25 0.42 1.25
SM 1 Lo_urenco and Figueirag3] 0.0 0.0 1.43
Min [5] 0.01 0.01 1.59
Present study 0.01 0.01 1.55
Polak and Vecchio [g] 1.25 0.42 1.25
Lourenco and Figueiras(3] 0.0 0.0 1.84
M2 Min{s] 0.01 0.01 1.86
Present siudy 0.01 0.01 1.83
Polak and Vecchio [g] 1.25 0.42 1.25
Lo_urenco and Figueirag3] 0.0 0.0 1.42
M3 Min{s] 0.01 0.01 1.55
Present siudy 0.01 0.01 1.42
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Table (8) Comparison of ultimate strength obtained from the test and calculated by nonlinear
inelastic analysis

Models Ultimate M oment Calculated Ultimate Ratio %
Obtained from the | Moment [6](kNm/m) [(2)* (1)]/100
test (kNm/m)
ML 7 42.5 45.208 107
ML 9 101.5 112.839 111
SM 1 477 652.86 118
SM 2 421 383.11 91
SM 3 488 546.56 112

4 Conclusions

In this paper, a complete design
algorithm is achieved by developing a design
code (DRCSH) based on a complete iterative
computational algorithm. This program can be
used as a stand-alone version, to determine the
load carrying capacity of critical points in
reinforced concrete panels, plates and shells;
and to verify the design code on the element
level. Five experimental models are designed.
The designed elements give calculated ultimate
strengths from 7 to 18% higher than those of
test results values, except one model, which
confirms the adequacy of the design algorithm,
and the devel oped design code.
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