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Abstract

In this work, a suggested analytical solution for nonlinear
dynamic analysis of (fiber-reinforced) composite
laminated thick plate is developed by using first-order
shear deformation theory (FSDT).

A computer program was built for this purpose for anti-
symmetric cross-ply and angle-ply, simply supported thick
laminated plate and the developed equations are solved by
usng (MATLAB V.7) program. The finite-element
solution is also adopted using (ANSYS V.8) package, to
confirm the analytical results.

The results presented show the effect of plate
thickness-to-side ratio (h/a), aspect ratio (a/b), number of
layers (N), the degree of orthotropic ratio (E,/E), fiber
orientation, boundary conditions, lamination scheme, and
the effect of shear deformation and rotary inertia on the
thick laminated plate.

K eywar ds. Composite, Plate, Shear, Inertia

1. Introduction

Composites are not single materials but a family of
materials whose stiffness, strength, density, therma and
electrical properties can be tailored. The matrix, the
reinforcement material, the volume and shape of the
reinforcement, the location of the reinforcement, and the
fabrication method etc. can all be varied to achieve required
properties. The equations which control the status of thick
composite plate (isotropic or orthotropic) material do not
take the effect of shear deformations or rotary inertia
together. These motivated the need to derive equations that
control the status of plates which was made of thin or thick
materials to end with a cumulative study.

Reddy and Phan [1] used a higher-order shear deformation
theory to determine the natural frequencies and buckling
loads of elastic plates. They obtained exact solution of
simply supported plates and the results are compared with
the exact solution of three dimensional elasticity theories
and compared between first-order shear deformation theory
and the classical plate theory. Then, Debal, Bagchi and
Kennedy, [2] presented a method for solving the linear
dynamic problem of thick plate using the finite element
method, the minimum number of degrees of freedom for an
element was employed in order to reduce the computer
solution time.

Game San and Sivadas. [3] Analyzed the free vibration
characteristics of orthotropic circular cylinder shells by
using Love’s first approximation shell theory, Semi-
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analytical finite element method was used as a
method of solution, for plates with clamped and
simply supported boundary condition and with
thickness varying along the axia direction.

The influence of thickness distribution on natural
frequencies, especially on lowest natural frequency,
the effect of degree of orthotropic was investigated on
natural frequencies of shell.

Then, Zaghloul and Kennedy [4] presented the
nonlinear solution of unsymmetrical filamentary-
composite laminates with angle-ply and cross-ply
configurations, the solution was achieved by means of
a finite difference iterative technique and the
theoretical results were compared with experimental
findings. Konaka, Venkat eswaraand Raju [5] studied
the effect of geometric nonlinearity on the free
flexural vibrations of moderately thick rectangular
plates and used the finite element formulation to
obtain the non-linear to linear period ratios of some
rectangular plates, the effect of shear deformation was
included and used for the anaysis. The result
presented was for both simply supported and clamped
boundary conditions.

lyengar [6] presented a higher order linearization
method for analyzing nonlinear random vibration
problems. The non-linear terms of the given equation
were replaced by unknown linear terms. These were
described by extra nonlinear differential equations.
The numerical results on steady state variance and
function were obtained. These were found to be better
than the simple linearization results.

2. ANALYSIS

Nonlinear dynamics of thick composite laminated
plates including the effect of shear and rotary inertia:
The (FSDT) is based on the displacement field; [7].

wy(x, v,z 8)=ul(x, y.e0+ 2w, (x,9,£)
uplx, y oz t)=viz, )+ 2y, (x,y.¢)| 1
u3(x,y,z,£:l= w{x,y,ﬁ)
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Assumed Deformed
Configuration of Line

Actua Deformed
Configuration of Line

The general equations of stress- strain relation are:-

x| _Q 11 @ o 00 @15__ ar |
a| O Qz 0 0 Qx|
wz|=| 0 O @44 @45 O | nz 4
o= o o @45 @55 O | =

:d _@1& O 0 0 O 66 | #T |

By substitution equ. (3) in equ. (4):
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And the effect of shear; [8]

NUCEJ val

.11, No.1,2008

Transver se Shear and Rotary Inertia

252




Ay
A

a5

oy B |:A44 :||:W +w, ¥ :|

o, Ay Wor, ¥+ W, x
where: Qx and Qy are forces per unit length due to shear
effect

A =22 - Zo ) G fori, j=4,5.
b=l

2.3 General Equations of Mation

The equations of motion for (FSDT) obtained in the same
method are applied to obtain the general equations of
motion for (CLPT); [9].

For (FSDT) the following equations of motion for
nonlinear laminate plates are:
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Substituting equations (7) into equation (11) the
general equations of motion are.
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Then substitution equ. (8) And (12) into (10), we get:-
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The general eguations of motion can be re-written, as:
Kis U]
Kzs V
—[M ][A]+[K]Iinear[A]+ Kss nonlinear+[K31 Kz 0 Ka K35]nonlinearW :_E(th) 14
Kas 4
K3 b d
Where: - — — T
[AY]=[U(xy) V(xYy) ... 17

[]=lszyt) wxpl) wizyd) wxrs w e

15
[/]=[0 0 oxyp 0 0F

Respectively, where these matrices are shown in [10]

[M] and [K]linear and [k]nonlinear are asin [10]

3. General Solution for Equations of Motion

The general equations of motion, for different states
without damping, are:
[mI[A] +[K][A] =[]

To solve the above eguations, the actual displacement
equations shown in [10] (depending on the theory used)
for simply supported laminated plates are substituted into
general equations of motion. Then, by pre-multiplying the
result by [A(X, y)]" and integration of xy, a new form of
equation of motionsis obtained ;

16

[MI[A)] +[KI[AM] =[F]
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A program is built for solving by using first order

shear deformation theory (FSDT), for anti-symmetric
(cross-play) and (angle-ply) simply supported
laminated plates subjected to uniformly, sinusoidal
distribution for pulse and ramp dynamic loading. The
results are the dynamic response and stresses in each
layer.
New program was conducted to evauate the
mechanical properties and tested in different
situations (ssss and cccc). The tested model varies
between even schemes of (six layers) and odd one
(nine layers), two different plates dimensions were
selected for the entire tests (0.125*0.125 and
0.25*0.25)
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4. The Results and Discussions
4.1 Frequency Results
4.1.1 Effect of Number of Layers, boundary condition

Table (1) shows the effect of number of layer for first
five resonant frequencies (Hz) of the plate. The
frequencies increase with resonance and with increasing
the number of layers and for clamped plates the
frequencies increase more than for the simply supported
plates.

Table (1) Experimental reading of thefirst five
natural frequencies (Hz) of the manufactured
composite plates for type one and two end
condition
mode 4 -layer 6-layer 9- layer
SSSS [CCCC| SSSs [cccc|sssss|cecee
1st |141.0|173.9|289.1 | 350.7 | 487.0 | 539.3
2nd | 202.2 | 2445 344.7 | 409.8 | 545.1 | 620.9
39 |206.4|2715]380.4 ] 445.2| 717.0 | 796.3
4" 13196 354.1| 6886 | 762.1 | 798.7 | 863.4
5th | 542.1 | 577.1 [1446.2[1620.6]1468.01661.8
1st |129.9160.9|252.7 | 308.1 | 407.7 | 473.7

2nd | 1384 | 166.0 | 295.7 | 348.7 | 486.6 | 553.1
3¢ 182.9 | 211.2 | 347.4 | 418.2 | 500.0 | 554.8
4" 2589 | 287.1 | 536.4 | 768.4 | 708.9 | 879.4
5th | 476.9 | 517.3 |1196.4|1562.2|1386.0| 1595.6

250*250 mm | 125*125 mm

4.2D¢€flection Results
4.2.1 Effect of Loading Condition

Figs. (3) and (4) represent the variation of central
transverse deflection with time for anti-symmetric cross-
ply (0/90/0/...) simply supported thick laminated plates
under different bending loading (sinusoidal loading
q(x,y)=qo sin( x/a)sin( y/b)) and (uniform loading
q(x,y)=qo) respectively, (plus loading q(x,y,t)=P(x,y))
and (ramp loading q(x,y,t)=P(x,y) t/to) for (qo=10 N/cm2
,t0=0.0005 sec ). The magnitude of deflection due to pulse
loading is higher than ramp loading by 110%, because it
is subjected suddenly with a constant value of the time.

Figs. (5) and (6) represent the variation of central
transverse deflection with time for anti-symmetric cross-
ply (0/90/0/...) simply supported thick laminated plates
under different dynamic loading (pulse and ramp loading)
respectively (sinusoidal q(x,y)=gosin( x/a)sin(* y/b))
and (uniform q(x,y)=qo) loading. The deflection's
magnitude due to uniform loading is higher than the
deflection due to sinusoidal loading by 60% because the
value of the uniform loading is higher than the sinusoidal
loading.

422 Effect of Number of Layers and Fiber
Orientation

Figs. (7) and (8) represent the variation of central
transverse deflection with time for anti-symmetric cross-
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ply and angle-ply simply supported thick laminated
plates under sinusoidal (pulse and ramp) loading
respectively.

The figures show that the deflection’'s magnitude of
the anti-symmetric cross-ply (0/90/...) laminated is
higher than the anti-symmetric angle-ply (45/-45/...)
laminated with 15% because at (0=45/-45/...) .the
extension and bending stiffness A16, A26, D16 and
D26 appear to have a significant effect compared with
(6=0/901...).

Figs. (9) and (10) show comparison of the central
transverse deflection for four- layer symmetric thick
laminated plate about the middle plane (0/90/90/0)
and (90/0/0/90) with four-layer anti-symmetric cross-
ply (0/90/0/90/) thick laminated plates of simply
supported edges, subjected to sinusoidal (ramp and
pulse) loading respectively. The central deflection for
symmetric (0/90/90/0) plate is equal to symmetric
(90/0/0/90) plate and less than that for anti-symmetric
cross-ply laminated plate (0/90/0/90) because
symmetric conditions where there is no coupling
between bending and extension and stiffnesses (Bij)
are equa to zero.

4.2.3 Effect of Modulus Ratio, Thickness, Aspect
ratio and boundary condition

Fig. (11) represents the effect of the degree of
orthotropy (E1/E2) of (E2=10.6Gpa) on the centra
transverse deflection of simply supported — anti-
symmetric cross-ply thick laminated plates subjected
to sinusoidal pulse loading condition. The figure
shows, that the central deflection decreases with
increase in the material's degree of orthotropy ratio
(EVE2). The decreases in deflections are 40% and
33% for increasing (EL/E2) (10 to 20) and (20 to 30)
respectively, because increasing of the (EL/E2) ratio
means increasing of (E1), so the stiffness of the plate
or deflection resistance isincreased.

Fig. (12) showsthe effect of the thickness-to-length
ratio (h/a), on the transverse central deflection of the
simply supported anti-symmetric cross-ply thick
laminated plates (a=1m) subjected to sinusoidal ramp
loading condition. The results shows,that increasing
(h/a) ratio decreases the deflection of plates. The
deflections of plates decrease by 95%, 85% for
increasing (h/a) from (0.02 to 0.05) and (0.05 to 0.1)
respectively.

4.2.4 Effect of the Layer Position and Fiber
Orientation

Figs. (13) and (14) show the stress (ox) at the middle
plane of the layers in each layer for two-layer anti-
symmetric cross-ply (0/90) thick laminated plates under
(sinusoidal and uniformly) ramp loading respectively. The
maximum value of (oX) is at (t=th/2) and the stress (oX)
at the middle plane of plateis zero, i.e., at (Z=0), the stress
(ox) at the middle plane of layer-1 (7.6 MPa) and (12.5
MPa) for sinusoidal and uniformly loading respectively
and the stress (ox) is symmetric about the middle plane.
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Figs. (15) and (16) show the shear stress (txy) in the middle
plane of each layer for four- layer anti-symmetric cross-ply
(0/90/0/...) and angle-ply (45/-45/45/...) laminated plates
under uniform ramp loading. The maximum value of (txy) is
at (t=th/2), and the txy are symmetric about the middle plane
for cross-ply and anti-symmetric for angle-ply thick laminated
plates. Fig. (17) shows the stress (ox) with time at the middle
plane of layer-1 for four-layer anti-symmetric cross-ply
(0/90/01...), angle-ply (45/-45/..) and different fiber orientation
(0/45/90/-45) laminated plates, under uniformly ramp loading
condition. From the results, the stress (ox) for angle-ply
(45/-45/...) islessthan that for cross-ply (0/90/...) with 50%.

4.2.5 The Effect of the Shear Deformation and Rotary
Inertia

In this section, the effect of the transverse shear
deformation and rotary inertia is discussed to test the
validity of the present work (analytical solution) and
finite-element technique. therefore, a case of square,
simply-supported, four-layer anti-symmetric cross-ply
(0/90/0/...) thick laminated plate was studied for the
purpose of comparing the present work (analytical
solution) with shear deformation (S.D.), i.e., built using
(F.S.D.T) with finite-element technique with shear
deformation and without shear deformation, i.e., using
(C.L.P.T).

Figs. (17) and (18) show results for the variation of the
maximum  non-dimensional  deflection  parameter
(coefficient a=WmaxE22h3/goad) with plate thickness to
length ratio (h/a) for above laminated plates having
orthotropy ratio (E1/E2=10) and (EL/E2=40) with
(E2=10.6 GPa) respectively, and are subjected to a
sinusoidal loading (P(x,y)=qosin( 7 x/a)sin( 7 y/b)).

From the figures, good agreement is obtained between
the present work with (S.D.) and the finite-element
analysis with (S.D.). The figures show that for a laminate
in which the modulus ratio (EL/E2=10) the increase in
deflection due to transverse shear deformation effect is
20% at thickness ratio (h/a=0.1) and for a laminate of the
modulus ratio (E1/E2=40) the increase in deflection is
30% at thickness ratio (h/a=0.1), the effects of transverse
shear deformation on the deflection behavior of cross-ply
laminate considerably increase with the degree of
orthotropy of individua layers. Thus, the criterion for
applying classical thin-plate theory (C.P.T) to laminated
composite plates is not as simply defined as it is for thick
homogeneous isotropic plates.

Figs. (18 and 19)show results of two finite-element
analysis for the distributions of transverse shear stresses
(txz) and (tyz) across the thickness respectively, for
above laminated plate and which had a thickness ratio
(h/a=0.02), (a=1m) and subjected to uniformly ramp
loading. Results of the finite-element analysis which does
not include shear deformation are less than those which
include shear deformation.

Considerable difference can be noted in the results of the
two analyses, particularly in the distribution of transverse
shear stress parallel and neer to the edges. Thisisalso true
for thick isotropic plates but the differences are not as

pronounced because of the influence of material
properties and transverse heterogeneity.
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Figure (2) Central deflection of (cross-ply) thick
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Figure (3) Central Deflection of (Cross-Ply) Thick
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Figure (9) Central Deflection due to Sinusoidal Pulse

Loading for Different Fiber Orientations of Thick
Laminated Plate (N=4).
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Figure (10) Effect of Orthotropy (Modulus Ratio)
(EV/E2) on the Central Deflection of Cross-Ply
(0o/900/....), 4- Layer, Thick Laminated Plate Under
Sinusoidal Pulse Loading.
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Figure (11) Effect of Thickness (h) on the Central Deflection

of Cross-Ply,4- Layer, Thick Laminated Plate Under
Sinusoidal ramp Loading.
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Uniform Ramp Loading For Tow Layer Cross—Ply
(0°/90°) Thick Laminated Plates.
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Figure (12) ox) In Middle Plane of Each Layer Due
to Sinusoidal Ramp Loading For Tow Layer
Cross-Ply (00/900) Thick Laminated Plates.

Figure (16) ox) In Layer-1 due to Uniform Ramp
L oading For Different Fiber Orientations of Thick
Laminated Plates (N=4).
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Figure (17) The Effect of Shear Deformation on The Deflection of Square,4-
Layers, Anti-Symmetric Cross-Ply (0°/90%....) Laminated Plates, Under
Sinusoidal Ramp Loading
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Figure (18) The Effect of Shear Deformation on The Deflection of Square, 4-Layers, Anti-
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Distribution of Transverse Shear Stress t,,) Cross the
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(0°/90°/....) Laminated Plates, Subjected to Uniform Ramp

Loading.
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Figure (20) The Effect of Shear Deformation on the
Distribution of Transverse Shear Stress tyz) Cross the
Thickness of 4-Layers,Anti-Symmetric Cross-Ply
(0o/900/....) Laminated Plates, Subjected to Uniform
Ramp L oading.
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5. Conclusions

The suggested analytical solution is a powerful
tool for static and dynamic analyses of thick
composite laminated plates.

2. The central deflection decreases with increase in
the material's degree of orthotropy ratio (E/E2).
The decreases in deflections are 40% and 33%
for increasing (EL/E2) (from 10 to 20) and (from
20 to 30) respectively because increasing of the
(EVE2) ratio means increasing of (E1), so the
stiffness of the plate or deflection resistance is
increased.

3. The transverse shear stresses (txz) and (tyz) in
case of using anti-symmetric angle-ply (45/-45/-
45...) lamination is higher than using anti-
symmetric cross-ply (0/90/0/...) lamination.

4. Thereis no effect of the number of layers on the
transverse shear stress (txz) and (tyz) at the
middle plane and the values of stress will remain
constant in spite of the increase in the numbers of
layers.

5. The shear stress (1xz) at middle plane decreases
with increasing the aspect ratio (a/b) and the
orthotropy ratio of plates (EL/E2).
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