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Nomenclature 

a, b Dimensions of shell. 
Amn, Bmn, Cmn, Dmn, 
Emn, Fmn, Jmn

 

Arbitrary constants 

B constant 
Cij

 

stiffness matrix elements 
E1, E2, E3 Elastic Modulus 

components (GPa) 
fmn(t)

 

Generalized force (N) 
g1, g2

 

Body forces (N) 
G12, G13, G23 Shear modulus 

components (GPa) 
H Thickness (mm) 
K Kinetic energy 
L Cylinder length (mm) 
m, n indices 
Ni ,Mi, Pi, Si 

(i=1,2,3,6) 
Resultant reactions 
(N/mm),(N.mm) 

m1, m2, m3, m4

 

Body moments (N.mm) 
Qi, Ki (i=4,5) Resultant reactions 

(N/mm) 
Qij Elastic stiffness 

coefficients 
q Distributed transverse load 

(N/mm2) 
R Cylinder radius (mm) 
R11, R22 Principal radii of curvature 

of shell (mm) 
U Potential energy 
u, v, w, 1, 2, 1, 

2, 3,

 

1, 2, 3

 

Displacement components 
(mm) 

z Distance from neutral axis 
(mm)  

1,2,3,4,5,6

 

Strain components in 

principal directions 
12, 13, 23

  

Poison s ratios 

 

Density (Ns2/mm4) 

 

Frequency (rad/s) 
1,2,3,4,5,6 Stress components (MPa) 

in principal direction   

Abstract: 

Transient solutions will be developed for laminated 
simply supported closed cylindrical shells subjected 
to a uniform dynamic pressure at the outer surface 
of the cylinder. These solutions are obtained by 
using General Third Shell Theory (G.T.T.). 
Rectangular pulse, triangular pulse, sinusoidal 
pulse and (ramp-constant) load-time varying 
functions are studied and the required equilibrium 
equations are developed. The central deformation 
and principle stresses are investigated for different 
cross-ply laminates.  

Keywords: Laminate, Cylindrical, Shells. 

1.Introduction 

With the increasing use of composite materials in 
many industries and especially in high performance 
aircraft industry, there is a need for assessing the 
response of laminated cylindrical shells to dynamic 
loading. 

Analytical description of laminated composite 
shell is often based on classical laminate shell theory, 
which is an extension of the Love-Kirchhoff shell 
theory to composite shells. In Classical Shell Theory 
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(CST), the transverse strains are neglected under the 
assumption that straight lines normal to the middle 
surface are rigid. The neglect of transverse strains in 
composite laminates could lead to underestimation of 
deflections and overestimation of natural frequencies 
and critical buckling loads because of the very high 
transverse shear modulus compared to the in-plane 
Young s modulus  [1]. 

High order shell theories are those in which the 
transverse strains are accounted. Y. Narita et al [2] 
developed a theoretical method for solving the free 
vibration angle-ply laminated cylindrical shells. The 
angle-ply laminated shell is macroscopically modeled 
as a thin shell of General anisotropy by using the 
classical lamination theory. The Functional derived 
from the flugge-type shell theory is minimized by 
following the Ritz procedure, and arbitrary 
combinations of boundary conditions at both ends are 
accommodated by introducing newly developed 
admissible functions. 

Z.C.Xi et al [3] investigated the effects of shear 
non-linearity on free vibration of laminated 
composite shells of revolution using a semi-analytical 
method based on Reissner-Mindlin shell theory. The 
coupling between symmetric and anti-symmetric 
vibration modes of the shell is considered in the shear 
deformable shell element. Aleksandr Korjakin et al 
[4] used zig-zag model to investigate the free damped 
vibration of sandwich shells of revolution. As special 
cases the vibration analysis under consideration of 
damping of cylindrical, conical and spherical 
sandwich shells is performed. A specific sandwich 
shell finite element with 54 degrees of freedom is 
employed. Werner Hufenbach et al [5] developed an 
analytical solution for lightweight design using 
dynamically loaded fiber-reinforced composite shells. 
The analytic results were fully corroborated by 
accompanying FE calculations for special lay-ups. 
Humayun R. H. Kabir [6] investigated analytically 
the free vibration response of an arbitrarily laminated 
(crafted with advanced fiber reinforced composite 
materials)-thin and shallow cylindrical panels on 
rectangular planform with simply supported 
boundary conditions, using Kirchhoff-Love theory. J. 
J. Lee et al [7] used the finite element method based 
on Hellinger-Reissner principle with independent 
strain to analyze the vibration problem of 
cantilevered twisted plates, cylindrical and conical 
laminated shells. M. Amabili [8] investigated large-
amplitude (geometrically non-linear) vibrations of 
circular cylindrical shells subjected to radial 
harmonic excitation in the spectral neighborhood of 
lowest resonance. Young-Shin Lee et al [9] 
investigated the free vibration analysis of a laminated 
composite cylindrical shell with an interior 
rectangular plate by analytical and experimental 
methods. The frequency equations of vibration of the 
shell including the plate are formulated by using the 
reacceptance method. S. C. Pradhan & J. N. Reddy 
[10] presented an analytical solution of laminated 

composite shells with embedded actuating layers. 
The magnetostrictive actuating layers are used to 
control natural vibration of laminated composite shell 
panels. The (FSDT) is used to represent the shell 
kinematics and equations of motion. Ghanim Shaker 
[11] presented a general content of the classical 
composite cylindrical shell theory and the first order 
shell theory for elasto-static and elasto-dynamic 
analysis of shells of circular cross section, 
incorporating for the first time the gathered effects of 
internal (and external) pressure, thermal gradient, 
axial end loading, and the conventional end 
condition, on the mechanical behavior of the 
structure. M. Darvizeh et al [12] presented a 
calculation of overall dynamic response of thin 
orthotropic cylindrical shells. Due to the obvious 
importance of the effects of transverse shear 
deformation and rotary inertia, these terms are 
included in the analysis. The exact method is 
modified to predict the dynamic behavior of an 
orthotropic circular cylindrical shell. In this work the 
developed analytical solution includes deriving the 
equation of motion using GTT for the first time to 
analyze displacement and stress components for 
forced vibration of laminated composite cylindrical 
shells.  
    
2. Equations of motion: 

In present study the high-order theory 
displacement field is:  

)t,,x(z)t,,x(z)t,,x(w)t,z,,x(w

)t,,x(z)t,,x(z)t,,x(z)t,,x(v)t,z,,x(v

t),(x,zt),(x,zt),(x,zt),(x,ut)z,,u(x,

3
2

30

2
3

2
2

20

1
3

1
2

10

 

1 

 

Figure (1) Cylinder geometry (L axis axis 1,  
axis axis 2 & R axis axis 3). 
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Assuming that transverse shear stress vanishing at 
top and bottom of the laminated composite layers, 

and hence transverse strain also vanishes, so:                 
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The resulting strain-displacement relations are: 
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According to Hamilton s

 

Principles: 

0dtKU
1t

2t
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where: 
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From above 7equations of motion the following 
equations are obtained: 
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The constitutive relations of the kth lamina are: 
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and: 
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Substituting eqs.(12 and 13) in eq.(4) and then 
substituting the resultant forces and moments in 
equations of motion, the equations of motion are 
then solved by using Navier s solution  [2], which 
is presented as follows: )(*sinsin,,,
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where:  

=
L

m
, =n

 
Amn, Bmn, Cmn, Dmn, Emn, Fmn, Jmn are 
arbitrary constants. 

The stiffness and mass matrices will be 
obtained, then natural frequencies and their modes 

are also computed by solving eignvalue problems 
shown below: 
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The orthogonality condition of principal modes 
can be established with the result as shown below: 
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The general distributed loads are expanded in a 
series of principal modes as follows: 
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The generalized forces  tf mn are determined 

by making use of orthogonality condition. 
Multiplying eq. ((17)-a) by  Amn, eq.( (17)-b) by 
Bmn, eq.( (17)-c) by Cmn, eq.( (17)-d) by Dmn, 
eq.( (17)-e) by Emn, eq.( (17)-f) by Jmn and eq.( 
(17)-g) by Fmn, and adding the results, integrating 
over the plane area, and taking into account eq. 
(16) leads to the following result:  
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Substituting eq.(14) into equations of motion, 
taking into account eq.(15), gives:  
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For any (m, n).The solution to above equation is 
given by:  
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For sinusoidal spatial distribution of load, 
q(x, ,t)=q0sin xsin F(t), (m=n=1), the formal 
solution to the unknown functions may be 
expressed as:  
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It is noted that the solution in eq.(21) is 
normalized with respect to Cmn(k), the coefficients 
in expansion of w. 

where:  
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3. Numerical results 
Two types of cross-ply and isotropic closed 
cylindrical shells are analyzed and their transient 
responses are evaluated numerically. Also a 
comparative study with a shallow shell of  [1] is 
obtained analytically and numerically by using 
ANSYS (5.4) program.  

To examine the validity of the derived 
equations for forced vibration response for 
composite laminated shells, a comparison study is 
done with a shallow spherical shell of  [1]. By 
using the present analysis and finite element 
method in ANSYS (5.4), which shows good 
agreement between the results for the central 
deflection of two layer (0/90) cross ply laminate 
shell, which are (16.287(mm) using GTT, 
17.978(mm) using ANSYS ), while it was ( 16 
.537 (mm) taken from graph in  [1]), its obvious 
that the difference between the published results 

and the present work is (1.533%), these results are 
shown in Fig. (1).  

Maximum central displacements (W) for 
antisymmetric cross ply (0/90) under different 
load-time functions are listed in Table (1), from 
which its obvious that maximum displacement of 
this cylindrical shell occurs when it is under the 
rectangular-pulse, the variations of these 
displacements as function of time are plotted in 
Fig.(2), as a result then stresses ( 1), ( 2), also 
have their maximum values under this pulse and 
their variation with time are shown in Figs.(3 and 
4) respectively, in all figures the plotted stress 

component are taken as:
0

1

1 q

)
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H
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The maximum central displacements for 
symmetric cross ply (0/90/0) laminated cylindrical 
shells are developed in Table (2), rectangular-
pulse, here also gives maximum central 
displacement and therefore maximum stress 
components to the cylindrical shells. The variation 
of central displacements under these load-time 
functions are shown in Fig. (5), while the variation 
of stress components are shown in Figs. (6 and 7). 
Further, the amplitudes are smaller for symmetric 
cross ply than that for antisymmetric cross ply 
laminates, (22.57 and 22.36 mm) respectively.  

Similar results are presented for central 
displacements (W) and normal stress ( 1), ( 2), 
( 3) and transverse shear stress ( 4), ( 5), ( 6) for 
isotropic cylindrical shells in Table (3). 
Rectangular-pulse dynamic load also causes the 

maximum central displacement for this shell (its 
variation with time under different load functions 
are shown in Fig.(8), but it is smaller than that for 
both types of cross-ply cylindrical shells. 
Therefore, the stress components are also smaller, 
the variation of the isotropic shell stress 
components with time are as shown in Figs.(9 and 
10). 

Geometrical dimensions for the worked cases 
are, for spherical shell: (a=b=20, R11=R22=5a, 
H=2), for laminated closed cylindrical shell: 
(R=L=20 H=2), while load amplitude qo=2000MPa 
for cylindrical shells and qo=13.788 MPa for 
spherical shell, time duration for all load-time 
functions TD=.003sec.. Also in all calculations, 
material properties of the shells are listed in Table 
(4).   

Table (1):  Central displacement and stress components for two- layered (0/90) closed cylindrical 
shell and four types of pulses. 

 

Load-time 
Function 

W 
(mm) 

( 1/qo) ( 2/qo) ( 3/qo) ( 4/qo) ( 5/qo) ( 6/qo) 

Rectangular-pulse 22.57 45.12 -175.62 -17.91 1.22 9.33e-1 13.32 

Triangular-pulse 17.78 37.00 -107.22 -11.18 1.00 8.24e-1 9.97 

Sine-pulse 12.09 23.02 -94.60 -10.14 6.60e-1 5.47e-1 5.96 

Ramp-Constant 12.11 23.05 -94.83 -10.17 6.61e-1 5.48e-1 5.97 

     

Table (2):  Central displacement and stress components for three- layered (0/90/0) closed 

cylindrical shell and four types of pulses. 

 

Load-time 
Function

 

W 
(mm)

 

( 1/qo) ( 2/qo) ( 3/qo) ( 4/qo) ( 5/qo) ( 6/qo) 

Rectangular-pulse 22.36 112.53 -253.86 -38.93 3.37e-1 14.22 34.54 

Triangular-pulse 20.14 104.36 -201.58 -30.21 2.58e-1 12.88 32.05 

Sine-pulse 11.45 52.45 -120.91 -20.16 1.76e-1 7.39 14.66 

Ramp-Constant 11.44 52.40 -120.84 -20.15 1.76e-1 7.38 14.65 

       

Table (3):

 

Central displacement and stress components for isotropic (steel) closed cylindrical shell 
and four types of pulses. 
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Load-time 
Function 

W 
(mm) 

( 1/qo) ( 1/qo) ( 3/qo) ( 4/qo) ( 5/qo) ( 6/qo) 

Rectangular-pulse 4.16 -34.05 -99.15 -61.52 5.38e-1 1.86 13.52 

Triangular-pulse 3.79 -29.48 -85.786444 -54.10 4.65e-1 1.61 11.43 

Sine-pulse 2.09 -17.42 -49.89 -31.15 2.75e-1 9.47e-1 5.70 

Ramp-Constant 2.10 -17.51 -50.14 -31.31 2.76e-1 9.52e-1 5.74 

  

Table (4):

 

Material properties. 

  

Material 

properties 
Present work Steel [1] 

E1 132.38e3MPa 20.6e4MPa 132.38e3MPa 

E2= E3 10.75e3MPa 20.6e4MPa 10.75e3MPa 

G12=G13 5.653e3MPa 8e4MPa 5.653e3MPa 

G23 3.608e3MPa 8e4MPa 3.608e3MPa 

1312

 

.24 .3 .24 

23

 

.49 .3 .49 

 

1.32288e-9(N-s2/mm4) 7.85e-9(N-s2/mm4) 1.32288e-9(N-s2/mm4) 

 

4. Conclusions: 
The prominent points in this work are as follows: 
1- A general third order shell theory (GTT) is 

developed to derive the governing equations for 
forced vibration of simply supported cylindrical 
shells, for first time, and these equations are 
solved using Navier s method.

 

2- Good agreement between the results obtained 
by using GTT in present work with those 
obtained by other researchers using FEM for 
analyzing the dynamic behavior of laminated 
spherical shells, maximum percentage of  error 
is (1.533%). 

3- The response due to the rectangular loading has 
largest amplitude than that of other types of 
loading. 

4- Symmetric cross-ply laminates have smaller 
amplitudes than that for antisymmetric one.    
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Nomenclature 

a, b Dimensions of shell. 
Amn, Bmn, Cmn, Dmn, Emn, 
Fmn, Jmn

 

Arbitrary constants 

B constant 
Cij

 

stiffness matrix elements 
E1, E2, E3

 

Elastic Modulus components (GPa) 
fmn(t)

 

Generalized force (N) 
g1, g2

 

Body forces (N) 
G12, G13, G23

 

Shear modulus components (GPa) 
H Thickness (mm) 
K Kinetic energy 
L Cylinder length (mm) 
m, n indices 
Ni ,Mi, Pi, Si

 

(i=1,2,3,6) Resultant reactions (N/mm),(N.mm) 
m1, m2, m3, m4

 

Body moments (N.mm) 
Qi, Ki

 

(i=4,5) Resultant reactions (N/mm) 
Qij

 

Elastic stiffness coefficients 
q Distributed transverse load (N/mm2) 
R Cylinder radius (mm) 
R11, R22 Principal radii of curvature of shell 

(mm) 
U Potential energy 
u, v, w, 1, 2, 1, 2, 3, 

1, 2, 3

 

Displacement components (mm) 

z Distance from neutral axis (mm)  
1,2,3,4,5,6 Strain components in principal 

directions 
12, 13, 23

  

Poison s ratios 

 

Density (Ns2/mm4) 

 

Frequency (rad/s) 
1,2,3,4,5,6 Stress components (MPa) in principal 

direction 
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Figure (1)  Variation of center deflection as a 
function of time, for two- layered (0/90) shallow 

spherical shell under triangular pulse. 
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(a): Rectangular pulse (b): Triangular pulse 
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(c): Sine pulse (d): (Ramp-Constant) 

Figure (2) Variation of central deflection as a function of time, for two- layered (0/90) closed 
cylindrical shell and four types of pulses.  
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(a): Rectangular pulse (b): Triangular pulse 
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(c): Sine pulse (d): (Ramp-Constant) 

Figure (3) Variation of ( 1) as a function of time, for two- layered (0/90) closed cylindrical shell 
and four types of pulses. 
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(a): Rectangular pulse (b): Triangular pulse 
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(c): Sine pulse (d): (Ramp-Constant) 

Figure (4) Variation of ( 2) as a function of time, for two- layered (0/90) closed cylindrical shell and 
four types of pulses. 
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(a): Rectangular pulse (b): Triangular pulse 
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(c): Sine pulse (d): (Ramp-Constant) 

Figure (5) Variation of central deflection as a function of time, for three- layered (0/90/0) closed 
cylindrical shell and four types of dynamic load. 
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(c): Sine pulse (d): (Ramp-Constant) 

Figure (6) Variation of ( 1) as a function of time, for three- layered (0/90/0) closed cylindrical shell 
and four types of dynamic load. 
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(c): Sine pulse (d): (Ramp-Constant) 

Figure (7) Variation of ( 2) as a function of time, for three- layered (0/90/0) 
closed cylindrical shell and four types of dynamic load. 
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(a): Rectangular pulse (b): Triangular pulse 

0.000 0.001 0.002 0.003 0.004 0.005
Time (sec)

-1

0

1

2

3

W
 (

m
m

)

 

0.000 0.001 0.002 0.003 0.004 0.005
Time (sec)

0.00

0.50

1.00

1.50

2.00

2.50

W
 (

m
m

)

 

(c): Sine pulse (d): (Ramp-Constant) 

Figure (8) Variation of central deflection as a function of time, for isotropic (Steel) 
closed cylindrical shell and four types of dynamic load. 
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(c): Sine pulse (d): (Ramp-Constant) 

Figure (9) Variation of ( 1) as a function of time, for isotropic (steel) closed 
cylindrical shell and four types of dynamic load. 
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(c): Sine pulse (d): (Ramp-Constant) 

Figure (10) Variation of ( 2) as a function of time, for isotropic (steel) close 
cylindrical shell and four types of dynamic load. 
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