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Dimensions of shell.
Arbitrary constants

constant

stiffness matrix elements
Elastic Modulus
components (GPa)
Generalized force (N)
Body forces (N)
Shear

components (GPa)
Thickness (mm)
Kinetic energy
Cylinder length (mm)
indices
Resultant
(N/mm),(N.mm)
Body moments (N.mm)

modulus

reactions

Resultant reactions
(N/mm)

Elastic stiffness
coefficients

Distributed transverse load
(N/mm?)

Cylinder radius (mm)
Principal radii of curvature
of shell (mm)

Potential energy
Displacement components
(mm)

Distance from neutral axis
(mm)

Strain  components  in

principal directions

V12, V13, V23 Poison sratios
p Density (Ns/mm®*)
® Frequency (rad/s)
6123456 Stress components (MPa)
in principal direction
Abstract:

Transient solutions will be developed for laminated
simply supported closed cylindrical shells subjected
to a uniform dynamic pressure at the outer surface
of the cylinder. These solutions are obtained by
using General Third Shell Theory (G.T.T.).
Rectangular pulse, triangular pulse, sinusoidal
pulse and (ramp-constant) load-time varying
functions are studied and the required equilibrium
equations are developed. The central deformation
and principle stresses are investigated for different
cross-ply laminates.

Keywords. Laminate, Cylindrical, Shells.
1.Introduction

With the increasing use of composite materiasin
many industries and especialy in high performance
aircraft industry, there is a need for assessing the
response of laminated cylindrical shells to dynamic
loading.

Analytical description of laminated composite
shell is often based on classical laminate shell theory,
which is an extension of the Love-Kirchhoff shell
theory to composite shells. In Classical Shell Theory
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(CST), the transverse strains are neglected under the
assumption that straight lines normal to the middle
surface are rigid. The neglect of transverse strains in
composite laminates could lead to underestimation of
deflections and overestimation of natural frequencies
and critical buckling loads because of the very high
transverse shear modulus compared to the in-plane
Y oung's modulus [1].

High order shell theories are those in which the
transverse strains are accounted. Y. Narita et a [2]
developed a theoretica method for solving the free
vibration angle-ply laminated cylindrical shells. The
angle-ply laminated shell is macroscopically modeled
as a thin shell of General anisotropy by using the
classical lamination theory. The Functional derived
from the flugge-type shell theory is minimized by
following the Ritz procedure, and arbitrary
combinations of boundary conditions at both ends are
accommodated by introducing newly developed
admissible functions.

Z.CXi et a [3] investigated the effects of shear
non-linearity on free vibration of laminated
composite shells of revolution using a semi-analytical
method based on Reissner-Mindlin shell theory. The
coupling between symmetric and anti-symmetric
vibration modes of the shell is considered in the shear
deformable shell element. Aleksandr Korjakin et al
[4] used zig-zag model to investigate the free damped
vibration of sandwich shells of revolution. As special
cases the vibration analysis under consideration of
damping of cylindrical, conical and spherical
sandwich shells is performed. A specific sandwich
shell finite element with 54 degrees of freedom is
employed. Werner Hufenbach et a [5] developed an
analytical solution for lightweight design using
dynamically loaded fiber-reinforced composite shells.
The anaytic results were fully corroborated by
accompanying FE calculations for specia lay-ups.
Humayun R. H. Kabir [6] investigated anaytically
the free vibration response of an arbitrarily laminated
(crafted with advanced fiber reinforced composite
materials)-thin and shallow cylindrical panels on
rectangular planform with simply  supported
boundary conditions, using Kirchhoff-Love theory. J.
J. Lee et d [7] used the finite element method based
on Hellinger-Reissner principle with independent
strain  to analyze the vibration problem of
cantilevered twisted plates, cylindrical and conical
laminated shells. M. Amabili [8] investigated large-
amplitude (geometrically non-linear) vibrations of
circular cylindrical shells subjected to radial
harmonic excitation in the spectral neighborhood of
lowest resonance. Young-Shin Lee e a [9]
investigated the free vibration analysis of alaminated
composite cylindrical shell with an interior
rectangular plate by analytica and experimenta
methods. The frequency equations of vibration of the
shell including the plate are formulated by using the
reacceptance method. S. C. Pradhan & J. N. Reddy
[10] presented an analytical solution of laminated
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composite shells with embedded actuating layers.
The magnetostrictive actuating layers are used to
control natural vibration of laminated composite shell
panels. The (FSDT) is used to represent the shell
kinematics and equations of motion. Ghanim Shaker
[11] presented a general content of the classical
composite cylindrical shell theory and the first order
shell theory for elasto-static and elasto-dynamic
analysis of shells of circular cross section,
incorporating for the first time the gathered effects of
internal (and external) pressure, thermal gradient,
axial end loading, and the conventiona end
condition, on the mechanical behavior of the
structure. M. Darvizeh et a [12] presented a
calculation of overal dynamic response of thin
orthotropic cylindrical shells. Due to the obvious
importance of the effects of transverse shear
deformation and rotary inertia, these terms are
included in the analysis. The exact method is
modified to predict the dynamic behavior of an
orthotropic circular cylindrical shell. In this work the
developed analytical solution includes deriving the
equation of motion using GTT for the first time to
analyze displacement and stress components for
forced vibration of laminated composite cylindrical
shells.

2. Equations of motion:

In present study the high-order theory
displacement field is:

U(RZE=UOO QOO DO DO (0T)
W% 4z0 2% A2k AP 2o | 1
VWK 21) =W G0)-+2as% A2 )

L

Figure (1) Cylinder geometry (L axis= axis 1, 6
axiss axis2 & R axis= axis 3).
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Assuming that transverse shear stress vanishing at
top and bottom of the laminated composite layers,

and hence transverse strain also vanishes, so:
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The resulting strain-displacement relations are:
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The constitutive relations of the kth lamina are:
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Substituting egs.(12 and 13) in eq.(4) and then m
substituting the resultant forces and moments in 2(x0,2t)=>"3"F_ sinaxsinBo* T, (1)
equations of motion, the equations of motion are meL n=l
then solved by using Navier 's solution [2], which S . . .
is presented as follows: 05(%.0, z,t):;nz:;\]msnaxsnﬂe Ton(0)
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where:

)

Amn, Bmn, Cmn, Dmn, Emn, Fmn, Jnn are
arbitrary constants.

The stiffness and mass matrices will be
obtained, then natural frequencies and their modes

are also computed by solving eignvalue problems
shown below:
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The orthogonality condition of principal modes
can be established with the result as shown below:
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The general distributed loads are expanded in a
series of principal modes asfollows:
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The generalized forces f,,,(t) are determined
by making use of orthogonality condition. . 5
Multiplying eq. ((17)-a) by Amn, eq.( (17)-b) by Trn+ @mn T = i 19

Bmn, eg.( (17)-c) by Cmn, eq.( (17)-d) by Dmn,
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(17)-g) by Fmn, and adding the results, integrating
over the plane area, and taking into account eg.
(16) leads to the following result:
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Substituting eg.(14) into equations of motion,
taking into account eq.(15), gives:

For any (m, n).The solution to above equation is
given by:

20

For sinusoidal spatia distribution of load,
q(x,0,t)=q0sinaxsinBoF(t), (m=n=1), the formal
solution to the unknown functions may be
expressed as.
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It is noted that the solution in eq.(21) is where:
normalized with respect to Cmn(k), the coefficients
in expansion of w.
16
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3. Numerical results

Two types of crossply and isotropic closed
cylindrical shells are analyzed and their transient
responses are evauated numerically. Also a
comparative study with a shalow shell of [1] is
obtained analytically and numerically by using
ANSYS (5.4) program.

To examine the validity of the derived
equations for forced vibration response for
composite laminated shells, a comparison study is
done with a shallow spherical shell of [1]. By
using the present analysis and finite element
method in ANSYS (5.4), which shows good
agreement between the results for the centra
deflection of two layer (0/90) cross ply laminate
shell, which are (16.287(mm) using GTT,
17.978(mm) using ANSYS ), while it was (=16
537 (mm) taken from graph in [1]), its obvious
that the difference between the published results
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and the present work is (1.533%), these results are
shownin Fig. (1).

Maximum central displacements (W) for
antisymmetric cross ply (0/90) under different
load-time functions are listed in Table (1), from
which its obvious that maximum displacement of
this cylindrical shell occurs when it is under the
rectangular-pulse, the variations of these
displacements as function of time are plotted in
Fig.(2), as a result then stresses (c1), (c2), aso
have their maximum values under this pulse and
their variation with time are shown in Figs.(3 and
4) respectively, in al figures the plotted stress
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The maximum centra displacements for
symmetric cross ply (0/90/0) laminated cylindrical
shells are developed in Table (2), rectangular-
pulse, here aso gives maximum central
displacement and therefore maximum stress
components to the cylindrical shells. The variation
of central displacements under these load-time
functions are shown in Fig. (5), while the variation
of stress components are shown in Figs. (6 and 7).
Further, the amplitudes are smaller for symmetric
cross ply than that for antisymmetric cross ply
laminates, (22.57 and 22.36 mm) respectively.

Similar results are presented for central
displacements (W) and normal stress (¢1), (62),
(63) and transverse shear stress (64), (05), (c6) for
isotropic  cylindrical shells in  Table (3).
Rectangular-pulse dynamic load also causes the

maximum central displacement for this shell (its
variation with time under different load functions
are shown in Fig.(8), but it is smaller than that for
both types of crossply cylindrica shells.
Therefore, the stress components are also smaller,
the variation of the isotropic shell stress
components with time are as shown in Figs.(9 and
10).

Geometrical dimensions for the worked cases
are, for spherical shell: (a=b=20, R11=R22=5a,
H=2), for laminated closed cylindrica shell:
(R=L=20 H=2), while load amplitude qo=2000M Pa
for cylindrical shells and qo=13.788 MPa for
spherical shell, time duration for al load-time
functions TD=.003sec.. Also in all calculations,
material properties of the shells are listed in Table

(4).

Table (1): Central displacement and stress components for two- layered (0/90) closed cylindrical
shell and four types of pulses.

o | oy | (@) | (@20 | (090 | (000 | (o) | (o)
Rectangular-pulse | 22.57 | 45.12 | -175.62 | -17.91 1.22 9.33e-1 | 13.32
Triangular-pulse | 17.78 | 37.00 | -107.22 | -11.18 100 | 824e1| 9.97

Sine-pulse 12.09 | 23.02 | -94.60 | -10.14 | 6.60e-1 | 5.47e-1 | 5.96
Ramp-Constant | 12.11 | 23.05 | -94.83 | -10.17 | 6.61e-1 | 548e-1 | 5.97

Table (2): Central displacement and stress components for three- layered (0/90/0) closed
cylindrical shell and four types Of pulses.

Load-ti W

oad-time (/%) | (62000) | (6J%) | (o4d) | (05/0) | (o6/c)
Function (mm)

Rectangular-pulse | 22.36 | 112.53 | -253.86 | -38.93 | 3.37e1 | 1422 | 3454

Triangular-pulse 20.14 | 104.36 | -201.58 | -30.21 2.58e-1 12.88 32.05
Sine-pulse 11.45 5245 | -120.91 | -20.16 1.76e-1 7.39 14.66

Ramp-Constant 1144 | 5240 | -120.84 | -20.15 1.76e-1 7.38 14.65

Table (3): Central displacement and stress components for isotropic (steel) closed cylindrical shell
and four types of pulses.

NUCEJ, Val.10, NO.1
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Load-time W
Function (mm) (61/00) (61/00) (03/0) | (04/0) (05/0) | (o6/0o)
Rectangular-pulse | 4.16 | -34.05 -99.15 -61.52 | 5.38e-1 1.86 13.52
Triangular-pulse | 3.79 | -29.48 | -85.786444 | -54.10 | 4.65e-1 161 11.43
Sine-pulse 2.09 | -17.42 -49.89 -31.15 | 2.75e-1 | 947e-1 | 5.70
Ramp-Constant 210 | -17.51 -50.14 -31.31 | 2.76e-1 | 952e-1 | 574
Table (4): Material properties.
Material
) Present work Steel [1]
properties
E; 132.38e3MPa 20.6e4MPa 132.38e3MPa
E,=E; 10.75e3MPa 20.6e4MPa 10.75e3MPa
G1o=Gy3 5.653e3MPa 8edMPa 5.653e3MPa
Gy 3.608e3M Pa 8edMPa 3.608e3M Pa
Vi, = Vg .24 3 .24
Vs 49 3 49
p 1.32288e-9(N-s/mm?) |  7.85e-9(N-s/mm®*) 1.32288e-9(N-s”/mm?”)

4. Conclusions:

The prominent pointsin thiswork are as follows:

1-A genera third order shell theory (GTT) is
developed to derive the governing equations for
forced vibration of simply supported cylindrical
shells, for first time, and these eguations are
solved using Navier’'s method.

2-Good agreement between the results obtained
by using GTT in present work with those
obtained by other researchers using FEM for
analyzing the dynamic behavior of laminated
spherical shells, maximum percentage of error
is (1.533%).

3-The response due to the rectangular loading has
largest amplitude than that of other types of
loading.

4-Symmetric cross-ply laminates have smaller
amplitudes than that for antisymmetric one.
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stiffness matrix elements

Elastic Modulus components (GPa)
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Strain components in  principal
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Stress components (MPa) in principal
direction
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Figure (1) Variation of center deflection asa
function of time, for two- layered (0/90) shallow
spherical shell under triangular pulse.
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Figure (2) Variation of central deflection as afunction of time, for two- layered (0/90) closed
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Figure (3) Variation of (c1) asafunction of time, for two- layered (0/90) closed cylindrical shell

and four types of pulses.
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Figure (7) Variation of (s,) asafunction of time, for three- layered (0/90/0)
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Figure (9) Variation of (c,) asafunction of time, for isotropic (steel) closed

cylindrical shell and four types of dynamic load.
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cylindrical shell and four types of dynamic load.

Figure (10) Variation of (c,) asafunction of time, for isotropic (steel) close
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