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Abstract: 
    Evaluating the natural frequencies of multi- 

span  beams with elastic supports play a major 

role in vibration designing and optimizing  of 

many structures such as bridges, railways ,pipes 

and so on  The continuity of  the boundary 

conditions ,state space and numerical methods are 

normally  used to investigate the vibration 

characteristics  of such structures .Unfortunately 

,such methods lead to high size matrix in dealing 

with the boundary value problem  as the  number 

of spans increase. In the present work, the 

problem is solved analytically by using Modal 

Analysis techniques in which the continuous 

system is discreteized to finite degree of freedoms 

in terms of the generalized coordinates  A proper 

shape function are employed for describing the 

system dynamical behavior and satisfying the 

boundary conditions .In the present method the 

size of the resulting Eigen matrix depends on the 

number of mode chosen regardless of the number 

of spans. With this method wide variety of 

support configurations can be treated. The validly 

and convergence of the present method for 

calculating the natural frequencies is carefully 

checked by comparing with the exact values for 

two-span beams with different boundary 

conditions  . It is found that using only (5) modes 

for the assumed solution gives only 2% error for 

two span simply supported and free ends beam , 

however for clamped ends the error is 8% .The 

present method is further checked by comparing 

with the Finite Element method the results show 

good agreements where the error is not increases 

1% .The results of the natural frequencies of up to 

(10) equal and unequal spans beams under 

different boundary conditions and support 

stiffness are presented .The results showed that 

the natural frequencies can be highly controlled 

by proper choosing of the structure parameters 

and support stiffness. 
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1-Introduction  
     The design of structural supports plays a key 

role in engineering dynamics and therefore close 

attention should be paid to their characteristics  

 

 

and number. Supports are not only expected to 

hold a structure firmly, but can also be redesigned 

to improve the structural performance. There are 

many engineering applications dealing with the 

dynamic of beams supported intermediately by 

rigid or elastic supports. Such multi span beams 

can be found in; bridges, rail ways, pipes, 

structure frames and so on. 

     The frequency equation of a beam with an 

intermediate support was developed by Rao [1], 

in which the continuity condition at the supported 

point was employed. The stiffness of an elastic 

single intermediate support for beams with 

different end conditions was investigated 

numerically by Wang [2].It is found that 

increasing the stiffness of the intermediate 

support leads to increase the natural frequencies . 

The frequency equation of a beamlike structure 

with regard to the position of a simple (or point) 

support was driven by using the discrete method. 

The effect of an intermediate support when the 

ends of the beam have elastic constraints was 

treated by Albarracı´n et al. [3]. It is concluded 

that the location of the support has significant 

effects on the natural frequencies especially for 

the odd number modes The effect of adding 

discrete masses on the beam natural frequencies 

for many end conditions was considered by Low 

[4].This study derived a closed-form solution for 

the minimum stiffness by using the derivatives of 

a natural frequency with respect to the support 

position. The solution process also provides 

insight into the dynamics of a beam with an 

intermediate support under general boundary 

conditions.  

    Timoshenko multi span beams carrying 

multiple spring-mass systems with axial force 

effect was analyzed by Yesilce [5].In this paper 

the problem was solved by using secant method 

for the non-trivial solution of different values of 

axial force .The effect of rotary inertia and shear 

deformation was investigated in this paper ,It is 

found that the effect of these parameters is to 

slightly increase the natural frequencies and it can 

be neglected for thin beams  . The orthogonality 

conditions are used to solve the dynamical 

behavior of Euler -Bernoulli beam by Yozo [6]. In 

this paper a two-span beam with clamped–
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pinned–pinned supporting was investigated .The 

minimum stiffness of a simple support that raises 

a natural frequency of a beam to its upper limit 

for different boundary conditions was investigated 

by D. Wanga et al. [7].  

     Evaluating the eigenvalues of an arbitrarily 

supported single-span or multi-span beam 

carrying combination of lumped mass was 

performed by Philip and Cha [8] .The resulted 

frequency equation was formulated and solved 

numerically and graphically. Free vibration 

characteristics of a multi span beam with an 

arbitrary number of flexible constraints was 

investigated by Hai-Ping et al.[9]. Each span of 

the continuous beam was assumed to obey 

Timoshenko beam theory. The compatibility 

requirements on each constraint point were 

considered, the relationships between two 

adjacent spans was obtained. The Eigen solutions 

of the entire system then obtained by using a 

transfer matrix method. 

      The analysis of multiply continuously  

supported beams subjected to moving loads, 

which in turn can be modeled either as moving 

forces or moving masses was performed by 

DeSalvo et al. [10 ] . A dedicated variant of the 

component mode synthesis method was proposed 

    In this method the classical primary–secondary 

sub structure approach was tailored to deal with 

the slender (Euler–Bernoulli) continuous beams 

with arbitrary geometry. The whole structure is 

ideally decomposed in primary and secondary 

spans with convenient restraints. Numerical 

examples were presented to demonstrate the 

accuracy of the proposed procedure. 

    As it can be seen from the above review that 

there are sufficient methods for analyzing multi 

span beams with equal spans exists in the 

literature .However, there is a scarcity in the 

methods dealing with irregular spans beams 

(irregular supports spacing).In this paper a general 

procedures for evaluating the natural frequencies 

for any beam and supporting configurations will 

be presented .The procedure can be used for 

single and multi (equal or unequal) span beams. 
 

2-Theoretical consideration  
     The model considered is a beam of length (L) 

and flexural rigidity (EI) seated on (Ns) number of 

elastic supports and obeyed Euler- Bernoulli 

theory .The i
th

 elastic support is represented by 

translational and rotational springs with stuffiness 

constants of (Kti) and (Kri) respectively. As shown 

in Fig.(1). 

 
Figure 1: Beam seats on multi elastic supports  

 

  
     The analysis of the natural frequencies is 

started from writing the equations of motion of a 

beam subjected to external distributed loading ,as 

the follows [11]; 
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Eq.(1) can be put into the following 

dimensionless forms; 

 

),(.  fIV                                 …   (2) 

 

Where; 

Lw/   , EIL /3  ,  Lx /  and  

AEILt  /)/( 2                                …  (3) 

    The notations )(.    for  /   and )(.   for   

 /   are used. 
 

    Eq.(2) may be discreatized by using Modal 

Analysis method. For this purpose a proper shape 

function for space must be chosen to satisfy all 

the boundary condition. In this work a modified 

shape function was tried to accomplish with the 

effects of the elastically deformed and 

undeformed modes. The undeformed modes are 

the rigid body translational and rotational modes. 

Hence the suitable shape functions can be written 

as;   

RRTT

N

s

ss qqq  
3

)()(),(    … (4) 

     In the above equation, )(s  stand for the 

normal modes of beam free vibration (elastic ), T   
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for rigid translational modes and R    for rigid 

rotational modes (non elastic)  . 

   In the absence of all the constrained effects, the 

beam boundary conditions are free moment and 

shear force at both  ends so that the normalized 

mode shapes )(s   can best chosen as  free-free 

vibration normal modes  .Such mode shapes take 

the following form [12];

 

)cosh(cossinhsin)()(  sssssss                  …  (5) 

 

 

Where; 
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ss
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


  ,                        …  (6) 

s  is the Eigen value  of the free-free beam for s 

mode which are known ; 

For example 1 =4.730041, 2 =7.853205,
 3

=10.995608,
 4 =14.1380,……  

    The rigid translational and rotational modes can 

be normalized as; 

 

1T ,  R                                         …   (7)
 

 

Substituting, Eq. (7) into (4) leads to ; 

RT

N

s

ss qqq .)()(),(
0
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    ...  (8) 

 

Now ,substituting Eq. (8) into Eq. (2) gives; 

 ),(.).(  fqqqq RTsss

IV

s   

                                                                      …  (9) 

Where q(τ) is replaced by q for simplicity.  

Now, multiplying Eq. (9) by the boundary 

residual series  


1)()(
1

N

r

rr  and 

integrating over the whole beam length (0 to 1)  , 

the following matrix equation can be obtained ; 
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Due to the orthogonally property of the normal 

modes which are; 
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and; 
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     The elements of matrices [A] and [M] are 

given in the Appendix B . 

     In equation (2) the forcing term  f(ζ,τ) 

represents  all the generalized elastic forces 

excreted on the beam due to the effects of the 

linear and torsional springs . 

Referring to Fig. (1), the i
th

  linear  and torsional 

spring force and moment on the beam can be 

written as; 
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N
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          …  (13) 
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N

r

rRi qqk 
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                                                                   …  (14) 

     From these equations  the  generalized forces 

{F}vector in Eq.(10)  can be found as the follows; 

1-For linear spring; 
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2-For torsional spring;  
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    The Diarac delta δ is used since the forces are 

concentrated. 

Substituting  Eqs.(15) and (16) into Eq.( 10) and 

arranging gives; 
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Where, Ns denotes the number of supports or 

constrained points of the beam . 

The elements of matrix [H
i
] and [L

i
], are given in 

Appendix C 

 

Finally ,Eq. (18) can be put in the following 

standard form; 
 

0}]{[}]{[  qMqK 
                           …  (19) 

 

Where ; 

])[][(][][ i

ri

i

ti

Ns

i

LKHKAK  
    ... (20) 

Where ;Kti = αkti and Kti = αkti  are the 

dimensionless translational and rotational 

stiffness. 
    Eq.(20) tells that increasing the number of 

support has no  effect on the size of the matrix [K] 

since it depend on the number of modes chosen  

.In many of the other methods like the continuity 

of boundary conditions and Finite Element the 

corresponding matrix size increased with the 

number of supports . This is the main advantage 

of the present method which allows for analyzing 

any number of span beams in one program. 

     Since vibration is harmonic motion one can 

assume the following solutions for q; 

 
ieqq }ˆ{}{                                           …  (21) 

 

Where 
},ˆ{q  is an arbitrary vector . 

     Substituting Eqs. (21) into Eqs. (19) and 

eliminating the arbitrary constants yield to the 

following determinant ; 

 

][][ 2 MK  = 0                                 …  (22) 

 

     Equation (22) can be used to investigate the 

natural frequencies for the following cases ; 

1. Single span beam under classical 

boundary condition.  

2. Single span beam under elastic supports . 

3. Multi span beam with equal or unequal 

span under different boundary 

conditions. 

4. Beam under multi elastic supports. 

 

     By the successive choice of the parameters 

(Ns,ζ Kti and Kri) the upper four cases can be 

obtained .For example a three-equally spans beam 

under   f-s-s-c supporting one must set (Ns=3; ζ 

=0,⅓,⅔,1 ; Kti = 0,1x10
12

,1x10
12

,1x10
12

;and  

Kri=0,0,1x10
12

),in which  the value 1x10
12 

is 

assigned for rigid supports (numerical infinite  

stiffness) . 
 

3-Results and discussions 
 

     Prior of any calculation, the validity of the 

assumed shape functions and the convergence of 

the present method were tested. In this test , the 

“exact” values of the natural frequencies for the 

lowest three modes of two-span beams under s-s , 

f-f and c-c boundary conditions were calculated 

by using the method of continuity of the boundary 

conditions(see for example ref.11). The resulting 

Eigen matrices  for the three cases are given in 

Appendix D .The convergence and the accuracy 

of the present method are tested with aid of  

Figs.(2) .In these figures the values of the lowest 

three natural frequencies of the above mentioned 

beams are evaluated by the present method with 

the number of the assumed modes  (N) are varied 

from  (1 to 10 ) for s-s and f-f beams and from (1-

15) for c-c beam .The exact values of the natural 

frequencies are given in the same figure ,also .The 

figures show that in general the accuracy of the 

solution is improved as the number of the 

assumed modes increased .In case of  s-s and f-f 

beams (Figs.2-a,b) the natural frequencies are 

rapidly converge toward the exact values for the 

three considered modes. and when (N=6) an 

accuracy of  98% can be obtained .However for c-

c beam the required number of modes to achieve  

satisfactory  accuracy is higher .For example to 

achieve 92% accuracy  one must use  (N=10) for 

the first mode ,(N=13) for the second mode and 

(N =15) for third mode . The reason of this 

behavior can be attributed to the nature of the 



NUCEJ Vol.91 No.2, 2016                                                                   Ismail, Jweeg, pp.353 - 362 

357 

assumed shape functions .This solution generate 

elastic curves which are more closer to the exact 

curve for s-s and f-f beams than that of c-c beam . 

To check the validity of the present solution, a 

beam with (1 to 10) spans simply supported at 

both ends with rigid intermediate supports is 

solved by Finite Element Method (FEM) and by 

the present method, also .The ANSYS 14 

software is employed for solving the FEM in 

which the beam spans are represented  by using 

BEAM3 element while the translational  and 

rotational springs are represented by using 

COMBIN14 element. The result of the two 

methods are collected in Table (1).As it can be 

seen form the table that the results are in a very 

good agreements where the maximum error is not 

exceeded 0.6% for the worst case . 

The effect of increasing the number of spans on 

the lowest four natural frequencies are shown in 

Figs.(3-a,b,c) .In these figures  beams under s-s, 

c-f and c-c boundary conditions with intermediate 

simply supported are investigated .As it can be 

seen that ,the natural frequencies are increased as 

the number of span increased for 

 

   

      
(a)                                                                    (b) 

                                             
                      (c) 

Figure 2: Convergence test for two-span beams under (a) s-s ,(b) f-f  

and (c) boundary conditions 

 
     All boundary conditions .This can be reasoned 

due to the fact that as the number of supports 

increase the spans become shorter and stiffer. 

    The higher stiffness leads to higher natural 

frequency .The irregularity in curves for the 

higher mode may be due to the error in the 

accuracy which increase in such modes as stated 

earlier . 

The effect of the stiffness of the intermediate 

supports on the lowest four natural frequencies of 

(1-10) span spans beam are investigated in Figs(4-

a,b,c).From these  figures it is clear that 

increasing support stiffness lead to increase the 

natural frequencies for all modes . 

Moreover one can see that for higher stiffness 

(Kt=1000) the natural frequencies increase more 

clearly. This indicates that, using rigid supports 

can effectively raise the natural frequencies to 

higher values . 
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Table(1): Compression of natural frequencies of (1 to 10) span beam simply supported at both 

ends with ANSYS   

4
th

 mode 3
rd

 mode 2
nd

 mode 1
st
 mode 

Nsp 
E% present FEM E% present FEM E% present FEM E% present FEM 

4604.0 

4604.0 

466.40 

363.4. 

466... 

460666 

460006 

46.040 

460.4. 

46.03. 

300603    

0406.   

.0.660   

.0466.   

0.0603   

0.6660   

63066.   

0.664.      

346.   

3.3.66 

157.5690  

  200.9851 

  354.2571 

  317.1452 

  430.2653 

  562.6875 

  710.1026 

  861.2003 

1087.2311 

1305.7834 

463300 

464.04 

463066 

464660 

463.00 

463430 

46334. 

464600 

464060 

4646.0 

066066   

300603   

3..660   

000600   

.0.6.6   

0.3606   

06.66.   

60066.   

604660   

33.46 

89.3960    

  158.1025 

  166.5040 

  248.0333 

  346.2108 

  461.4215 

  596.3025 

  754.0123 

  920.1541 

1159.1140 

464.04 

464000 

464..6 

464303 

464.04 

464.43 

464..3 

464000 

4640.6 

464006 

.6603.      

.3660   

33063.   

30.6.6    

06060   

.0.660   

030666   

..0600   

00.6.0   

340066 

39.5010  

  61.7041 

114.1215 

186.6637 

275.6235 

386.7175 

518.4273 

667.8516 

843.2464 

1025.137 

46433. 

464400 

4643.0 

464300 

464440 

464404 

464400 

464400 

4643.0 

464303 

9.7342 

39.5160  

 89.495  

158.2234 

247.8430 

356.9251 

486.0588 

635.8442 

803.6552 

994.8507 

9.7331    

39.515 

89.48    

158.201 

247.841  

 356.911 

486.0321 

635.8301 

  803.523 

994.7103 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
 

 

 

(a)                                                                               (b) 

 
(c) 

Figure 3: Variation of natural frequencies of the lowest modes  for (a)s-s ,(b)c- f (c) c-c 

beams with the number of equal spans 

 
     This is one of  practical solutions  to avoid the 

dangerous effect of the resonance by increasing 

the natural frequency .The natural frequencies for 

multi unequal spans beams under s-s ends are 

shown in Figs(6-a,b) .In Fig.(6-a) the 

dimensionless span lengths  are assigned 

sequence values of  (0.018, 0.036, 

0.052,..,0.18).In Figs (6-b) they  assigned;(0.07, 

0.14, 0.07, 0.14 , …. ,0.14 ).An example to 

illustrate the later sequence is shown 

schematically in Fig.(5).As it can be seen from 

comparing the two figures that the relation 

between the number of spans and the natural 

frequencies can be quite different .This means 
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that an optimization can be made by proper 

choosing of the intermediate supports locations 

.For the two studied cases one can see that the 

case of Fig(6-b) is more effective in increasing  

 

the natural frequencies than that of Fig.(6-a) .For 

example one needs to construct (6) spans to 

increase the first dimensionless natural frequency 

to (150) by using  the first configuration  while 

needs (8) spans to achieve the same frequency for 

the second .  

 

 
(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

 

Figure 4:Variation of natural frequencies with the number of spans of s-s beam for 

(a)first ,(b)second and (c)third modes, at different translational stiffness 

 

 
Figure 5: Unequal Span Beam Configuration with Span Length  

in Sequence of (0.07, 0.14, 0.07, 0.14) 
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(a)                                                                        (b) 

Figure 6:Variation of natural frequencies of the lowest modes  for unequal span beams 

have sequence; (a) 0.018,0.036,0.054,…0.18 and (b) 0.07,0.14,0.07,…0.14 

 
    A general case of multi span beam, in which 

the span length are not equal and all the supports 

has translational and rotational  stiffness ,is 

investigated in Fig.(7). In this figure the lowest 

four natural frequencies are plotted with 

dimensionless span lengths of; 

(0.07,0.14,0.07……0.14) .The figure shows that 

the natural frequencies increasing  depend on the 

support stiffness and the spacing. This situation 

can aid  the designer to control the natural 

frequencies by considering these parameters . 

    As it is clear from the above considered cases 

that wide variety of beam configurations (span 

length and number, boundary conditions, supports 

elasticity ) can be simply and effectively 

investigated by using  the presented procedures 

.The present procedure  can offer a 

comprehensive investigation  for the  design and 

optimization requirements for multi-span beams 

(multi supported) dynamic by adjusting the 

natural frequencies . 

4-Conclusions 
     From the discussion of the results and the 

comparison with the exact and the FE methods , 

the following conclusions can be summarized as 

the follow ; 

1- The present method  shows  a good 

convergence and accuracy  as compared 

with the exact method .It is found that 

;acquiring a good accuracy required only 

few number of assumed modes  depending 

on the boundary conditions .For s-s and f-f 

end supporting five modes are sufficient 

,however ,for clamped ends (10-15) modes 

must be considered . 

2- .Many classes of problems related with  

multi- span beams can be treated with the 

present method easily and effectively . 

3- The size of the resulting Eigenvalue matrix 

depends on the number of mode chosen 

regardless of the number of spans  as it is 

the case for the other corresponding 

methods . 

4- It is found that increasing support stiffness 

and span number lead to increase the natural 

frequencies for all modes under different 

boundary conditions . 

5- The natural frequencies can be successively 

controlled by proper adjusting the support 

and beam parameters .Hence , the present 

method can offer simple and unique 

procedures for designing and optimizing 

requirements for multi- span  beam 

structures  .  
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Figure 7: Variation of natural frequencies of the lowest mode with different  

elastic supports for unequal spans beam s-s ends 
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Appendix 
A) Notations ; 

s-s :simply supported ends beam 

f-f  :free ends beam 

c-c :clamped ends beam 

c-f  :clamped-free ends beam 

B )  elements of matrices [A] and [M] ; 

[A]=









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






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000000
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,[B]= 




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
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
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001000

000....00

000010
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C) Elements of matrix [H

i
] and [L

i
],; 

)()(, isirsr
ih 

 
)(,1 issN

ih   

01,1  NN
ih , 
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12,2  NN
ih  

)()(, isirsr
il  , 

0,1  sN
il , 

)(,1 issN
il   

01,1  NN
il , 12,2  NN

il .                                                                                          

     

D) The Eigen matrix of  two-span by using the 

“exact” solution  

(i)  for f-f ends supports ; 

   [-1 0 1  1 0 0 0 0 

0  -1 0  1 0 0 0 0 

sin(λs)  cos(λs)  sinh(λs)  cosh(λs)  0 0 0 0 

cos(λs)  -sin(λs)  cosh(λs)  sinh(λs) -1  0 -1  0 

 -sin(V)  -cos(λs)  sinh(λs)  cosh(λs)  0 1 0 -1 

0 0 0 0 0 1 0 1 

0 0 0 0 cos(λs) sin(λs) cosh(λs) sinh(λs) 

0 0 0 0  -sin(λs) -cos(λs) sinh(λs) cosh(λs)] 

(ii) for  s-s end supports ; 

 [0 1 0 1 0 0 0 0 

1  0 1  0 0 0 0 0 

sin(λs)  cos(λs)  sinh(λs)  cosh(λs)  0 0 0 0 

 cos(λs) - sin(λs) cosh(λs) sinh(λs) -1 0 -1 0 

-sin(λs) -cos(λs) sinh(λs) cosh(λs) 0 1 0 -1 

0 0 0 0 0 1 0 1 

0 0 0 0 sin(λs) cos(λs) sinh(λs) cosh(λs) 

0 0 0 0  -sin(λs) - cos(λs) sinh(λs) cosh(λs)] 

(iii) for  c-c end supports ; 

 [0 1 0 1 0 0 0 0 

0  -1 0  1 0 0 0 0 

sin(λs) cos(λs) sinh(λs) cosh(λs) 0 0 0 0 

cos(λs) -sin(λs) cosh(λs) sinh(λs) -1 0 -1 0 

-sin(λs) -cos(λs) sinh(λs) cosh(λs) 0 1 0 -1 

0 0 0 0 0 1 0 1 

0 0 0 0  sin(λs)  cos(λs)  sinh(λs)  cosh(λs) 

0 0 0 0  -sin(λs)  -cos(λs)  sinh(λs)  cosh(λs)] ,   

Where λs are the Eigen values  

 

 منتظمة الفضوة المتعدده تحت اسناد مرن  الترددات الطبيعية للعتبات الغير 
  باستخدام التحليل الشكلي

 

 د.محمود رشيد اسماعيل           أ.د.محسن جبر جويج 
 كلية الهندسة  –جامعة النهرين 

  قسم هندسة الاطراف والمساند الصناعية
 
 

 :الخلاصة
للعتبات ذات الفضاءات المتعدده والموضوعة على مساند مرنة يلعب دورا اساسيا  في ان ايجاد الترددات الطبيعية     

التصميم الامثل للاهتزاز للعديد من الهياكل كالجسور وخطوط السكك الحديدية والانابيب وغيرها .تستخدم عدة طرائق 
تنتج عن تلك الطرائق   عددية .لبحث خصائص الاهتزاز  مثل استمرارية الظروف المحيطية وحيز الحالة والطرائق ال

مصفوفات كبيرة الحجم تزداد بزيادة عدد الفضاءات  .في العمل الحالي تم حل المشكلة تحليليا باستخدام تقنيات التحليل 
حيث تم فيها تجزئة النظام المستمر  الى عدد محدد من درجات الحرية بدلالة  Modal Analysisالشكلي 

خدمت  دوال شكلية ملائمة لوصف التصرفات الديناميكية للنظام واستيفاء الظروف الحدية الاحداثيات المتولدة . است
.في هذه الطريقة يعتمد حجم المصفوفة الذاتية الناتجة على  عدد الانساق المختارة بغض النظر عن عدد فضاءات 

ذه الطريقه في حساب الترددات العتبة وبذلك يمكن التعامل مع انواع مختلفه من المساند.تم تدقيق سريان مفعول ه
الطبيعية وذلك بالمقارنة مع القيم الحقيقية وذلك لنموذج عتبة ذات فضائين  تحت ظروف اسناد مختلفة فظهر ان 

% للاسناد المحكم.كما تم 8%  في حالة  الاسناد البسيط و2افتراض  خمسة انساق للحل يسبب نسبة خطأ بحدود  
فبينت النتائج توافقا جيدا حيث لم تتعدى نسبة الخطأ   FEM يقة العناصر  المحددةتدقيق الطرية بالمقارنة مع طر

فضاءات ذات اطوال متساوية أومختلفة وتحت  11%.تم استعراض نتائج لعتبات مكونة من عدد   يصل لغاية 1
مساند مرنة فبينت النتائج انه بالمكان السيطرة على  الترددات الطبيعية بشكل كبير اعتمادا على خصائص النظام  

 المساند .ومرونة 
   , عتبة متعددة الفضاءات  ,التردد الطبيعي ,المساند المرنة ,دالة الشكل   التحليل الشكلي  الكلمات المفتاحية :

 
 


