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Abstract:  

A new control design procedure has been proposed 

in this paper based on the LQG control design. A 

two degree of freedom controller with integral 

action is obtained and tested on the magnetic 

levitation system, which is a good test-bed for 

control design because of its nonlinearity and 

unstability with practical uses in high-speed 

transportation and magnetic bearings. Simulations 

are performed under MATLAB environment and 

included to highlight that the proposed controller 

accurately achieves position tracking for different 

kinds of reference inputs.  
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I. Background And Motivation  
Magnetic levitation systems have practical 

importance in many engineering systems suchas in 

high-speed maglev passenger trains, frictionless 

bearings, levitation of wind tunnelmodels, vibration 

isolation of sensitive machinery, levitation of 

molten metal in inductionfurnaces, and levitation of 

metal slabs during manufacturing. The magnetic 

levitation systemscan be classified as attractive 

systems or repulsive systems based on the source of 

levitationforces. These kinds of systems are usually 

open-loop unstable and are described byhighly 

nonlinear differential equations which present 

additional difficulties in controllingthese systems. 

Therefore, it is an important task to construct high-

performance feedbackcontrollers for regulating the 

position of the levitated object [1]. 

 

In recent years, a lot of works have been reported 

in the literature for controlling magnetic levitation 

systems. The feedback linearization technique has 

been used to design control laws for magnetic 

levitation systems [2]. The input-output, input-state, 

and exact linearization techniques have been used 

to develop nonlinear controllers [3,4]. Other types 

of nonlinear controllers based on nonlinear methods 

have been reported in the literatures [5,6,7]. Robust 

linear controller methods such as H∞ optimal 

control, μ-synthesis, and Q-parameterization have 

also been applied to control magnetic levitation 

system [8,9,10,11]. Due to the features of the 

instability and nonlinearities of the magnetic 

suspension system, authors in [12] presents a 

magnetic levitation ball control system based on 

TMS320F2812, which is a high performance Digital 

Signal Controller currently in use in control 

e n g i n e e r i n g  f i e l d . 

Various control schemes based on neural 

networks (NN) techniques have been proposed for 

magnetic levitation system in the literature, in [13] 

a feedback error learning together with a PID has 

been used a hybrid control to guarantee stability of 

control approach. A method of simple adaptive 

control using neural networks with offset error 

reduction for an SISO magnetic levitation system is 

introduced in [14]. In this method the role of neural 

networks is to compensate for constructing a 

linearized model so as to minimize the output error 

caused by nonlinearities in the magnetic levitation 

system. While the work in [15] incorporate a NN in 

model reference adaptive control (MRAC) to 

overcome the problem. The control input is given by 

the sum of the output of the adaptive controller and 

the output of the NN. The NN is used to compensate 

the nonlinearity of the plant that is not taken into 

consideration in the conventional MRAC. Authors 

in [16] propose a hybrid controller using a recurrent 

neural network (RNN) to control a levitated object 

in a magnetic levitation system, to ensure the 

convergence of the RNN, the adaptation law of the 

RNN is modified by using a projection algorithm, 

and [17] presents an adaptive neural fuzzy network 

(ANFN) controller based on a modified differential 

evolution (MODE) for solving control problems. 

During the last two decades, sliding mode control 

(SMC) have received significant interest and have 

become well- established research areas with great 

potential for practical applications. Research in 

[18,19] used the magnetic force model of  [20] and 

proposed sliding mode controllers (SMC) for 

magnetic levitation systems. Combination between 

SMC and intelligent design have been proposed in 
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[21,22,23]. The fuzzy control technique is also used 

in magnetic levitation system as described in [24], 

while  authors in [25] presented an optimum 

approach for designing  controller for magnetic 

levitation system based on genetic algorithm (GA). 

Combinations between different intelligent 

designed methods like neural-fuzzy and their 

application to magnetic levitation system are 

investigated in [ 26, 27].   

This paper is organized as follows: Section 

2 describes the linear quadratic Gaussian (LQG), 

section III introduces the mathematical modeling of 

the magnetic levitation system, section IV is 

devoted to the design of the 2DOF controller 

procedure. Simulations and results are presented in 

section V. Finally, the conclusions are given in 

section VI.  

II. Linear Quadratic Gaussian (Lqg) 

Control Design   
In traditional LQG control, it is assumed that the 

plant dynamics are linear and known, and that the 

measurement noise inputs and disturbance signals 

(process noise) are stochastic with known statistical 

properties. That is, we have a plant model [28]: 

 

dBuAxx   (1) 

nDuCxy   (2) 

Where for simplicity we set 0D . d and n  

are the disturbance (process noise) and 

measurement noise respectively, which are usually 

assumed to be uncorrelated zero-mean Gaussian 

stochastic processes with constant power spectral 

density matrices W and V   respectively. That is,

d and n  are white noise processes [28]. 

The LQG problem is to find the optimal control 

)(tu  which minimizes [28,29], 
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Where E{} is the expectation operator,  Q and R 

are appropriately chosen constant weighting 

matrices (design parameters) such that 

0 TQQ  and 0 TRR . The name LQG 

arises from the use of a Linear model, an integral 

Quadratic cost function, and Gaussian white noise 

processes to model disturbance signals and noise 

[28]. 

The solution to the LQG problem, known as the 

separation theorem or certainty equivalence 

principle, is surprisingly simple and elegant. It 

consists of first determining the optimal controller 

for a deterministic linear Quadratic Regulator 

(LQR) problem: namely, the above LQG problem 

without d and n . It happens that the solution to 

this problem can be written in terms of the simple 

state feedback law [28,29], 

 

)()( txKtu r  (4) 

Where rK  is a constant matrix which is easy to 

compute and is clearly independent of W  and V, 

the statistical properties of the plant noise. Note that 

eq(4) requires that x is measured and available for 

feedback, which is not generally the case. This 

difficulty is overcome by the next step, where we 

find an optimal estimate x̂  of the state x, so that 

    xxxxE
T

ˆ ˆ    is minimized. The optimal 

state estimate is given by a Kalman filter and is 

independent of Qand R. the required solution to the 

LQG problem is then found by replacing xby x̂ , to 

give )(ˆ)( txKtu r . We therefore see that the 

LQG problem and its solution can be separated into 

two distinct parts, as illustrated in the figure 1 [28]. 
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Figure 1: The separation  theorem. 

The LQR problem, where all the states are known,  

is the deterministic initial value problem: given the 

system BuAxx   with a nonzero initial state 

)0(x , find the input signal )(tu  which takes the 

system to the zero state )0( x  in an optimal 

manner, i.e by minimizing the deterministic cost 

[28], 

  

(5) 

The optimal solution (for any initial state) is 

)()( txKtu r , where 

XBRK T

r

1  
 

(6) 

and 0 TXX  is the unique positive semi-

definite solution of the algebraic riccati equation, 

0   1   QXBRBXAXXA TT
 (7) 

The Kalman filter has the structure of an ordinary 

state estimator or observer, as shown in figure 2 

below, with [30]: 

)ˆ(ˆˆ xCyKBuxAx f   
(8) 

The optimal choice of fK , which minimizes 

    xxxxE
T

ˆ ˆ  , is given by [30], 

 
1 VYCK T

f  (9) 

Where 0 TYY is the unique positive semi-

definite solution of the algebraic Riccati equation 

[30], 

 

0     1   WYCVCYYAAY TT

 

(10

) 

 

 

Figure 2: the LQG controller and noisy plant. 

 

The LQG control problem is to minimize J in eq( 3). 

The structure of the LQG controller is illustrated in 

figure 2; but it is not easy to see where to position 

the reference input r, and how the integral action 

may be included, if desired. one strategy in included 

in figure 3. Here the control error r-y is integrated 

and the regulator rK  is designed for the plant 

augmented with the integrator states [28,29]. 
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Figure 3: 2-DOF LQG Controller with integral 

action and reference input. 

 

The state-space representation of the augmented 

plant( original plant with integrator) is given by 

[28]: 
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While the transfer function of the 2-DOF LQG 

controller from [ry] to u (i.e assuming positive 

feedback), is easily shown to be given by [28,29]: 
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) 

 

Where rpK and riK are the gains of the state 

feedback LQR of the integrator and plant states 

respectively (i.e. ][ rprir KKK  ) 

[28,29]. 

Its order is higher by one than the plant's order.  Note 

that the optimal gain matrices fK  and rK exist, 

and the LQG-controlled system is internally stable 

provided that the system with state-space 

realizations (
21,, QBA ) and ( CWA ,, 21

) are 

stabilizable and detectable [28].  
 

III. Model of The Magnetic Levitation 

System 
 

In this section, we will present the model of a 

magnetically suspended ball system,a schematic of 

which is shown in Fig. 4. The current passing 

through the wirewound around the armature creates 

a magnetic force, which attracts the steel balland 

counter balances the force due to gravity [31]. 
 

 

 

Figure 4: Magnetic Levitation system 

 

The magnetic force is directly proportional to the 

square of the current and inverselyproportional to 

the distance between the ball and the armature. The 

force balancecan be written as [32,33]: 
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where mK  is the proportionality constant. The 

voltage balance in the circuit can bewritten as 

[31,32,33]: 
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(14) 

 

Suppose that the current i is such that the ball is 

stationary at a chosen distance sh .We would like to 

derive a linear model that relates a deviation in h to 

a deviationin i. Let the force balance corresponding 

to the stationary point be modelled as [32,33,34]: 
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Subtracting Eq. (15) from Eq. (13), we obtain 

[32,34]: 
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After performing linearization to the nonlinear 

system (eq(16)) and letting hx 


1  , hx 


2 , 

ix 


3 , Vu 
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, the linearized state-space model 

of the magnetic levitation system is given by 

[31,32,33,34]: 
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Typical values of the system parameters are given 

in table 1 [32]. 

 

Table 1: Description of the Magnetic Levitation 

system Parameters. 

 

Parameter Description Value Unit 

M Mass of the ball 0.05 kg 

L Inductance 0.01 H 

Rc Resistance 1 ohm 

Km 
Proportionalilty

costant 
0.0001 - 

g 
Acceleration of 

the gravity 
9.81 m/s2 

hs Distance 0.01 m 

is 
Current at 

stationary 
0.7 A 

 

The current corresponding to the stationary point is 

obtained from eq(15) as [32]: 
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In other words, we have to apply an input voltage of  

V =  is*RC= 0.7 volt (neglecting the voltage drop on 

the inductor) to maintain the ball at stationary point 

(hs = 0.01 meter).With these typical values given in 

table 1, one can arrive at the state-space equation, 

given by eq(17) with state-space matrices: 
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(18) 

 

The magnetic levitation system is open-loop 

unstable with poles (eignvalues  ofA) given 

as:44.2719, -44.2719, -100. As can be seen one of 

the poles lie in the right-half plane. This results in a 

time response due to 0.02 step change of the 

reference input shown in figure 5. 
  

 

 

Figure 5: Ball position of the magnetic levitation system 

due to step change of 0.02 meter in the reference input. 
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Figure 6: Flowchart of  a 2 DOF LQG controller design 

procedure. 

 

IV. 2-DOF LQG CONTROLLER DESIGN 

PROCEDURE 

 

The output response of the ball position of 

the magnetic levitation system is clearly unstable as 

shown in figure 5, it is growing without bound and 

indeed it needs a controller to stabilize it and 

produce an acceptable output performance.  Figure 

6 is a flowchart that shows the various stages for the 

2 DOF LQG controller design.  

 

V. SIMULATIONS AND RESULTS 

Figure 7 is the closed-loop control system used to 

perform the simulations of the proposed 2DOF LQG 

controller for magnetic levitation system. To 

account for negative sign of  theLQR gain (i.e. –Kr), 

a positive feedback is used in the simulations. The 

weighting matrix Q is chosen such that only the 

integrated state y-r is weighted, while the Kalman 

filter is setup such that the integrated states are not 

estimated. 

 

Figure 7: Closed-loop control system of  the 

magnetic levitation system. 
 

The weighting matrix W is chosen so that the 

process noise directly affects the states, with these 

assumptions the values of the weighting matrices 

that are used in this simulations are: 
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and the 2 DOF LQG controller  from [ry] to u 

(eq(12)) in transfer function form is obtained by 

running the simulation program through MATLAB 

environment and found to be: 

T
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With the ball held at the stationary point (hs = 

0.01m), the output response of the system for step 

input of  r = 0.01 meter is shown in figure 8, as can 

be  seen the closed-loop system with the proposed 

LQG controller performs well and the new 

stationary point is reached with no overshoot and 

with settling time (Ts) of about 0.592 sec, while the 

input voltage (V) have to be doubled to get the new 

stationary point (figure8-b). Also, the proposed 

controller achieves tracking excellently with little 

delay at the output of the system; this is evident in 

figure 9 which depicts the ball position of the system 

(y) for a sinusoidal input.  

The designed controller present a good and fast 

disturbance rejection as shown in figure 10, where a 

step disturbance (d) of 0.02 at t= 15 sec is applied at 

the output of the system. In addition, the controller 

exhibits strong performance against system's 

parameter variations, the output of the system 

preserves its characteristics due to a variation of the 

circuit resistance (RC) as shown in figure11. 

Finally, figure 12 shows the output of the system for 

three different values of the weighting matrices 

Rand Q, as shown in the figure reducing R yields 

faster response. On contrary,  the output gets faster 

for larger values of Q. 
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Figure 8: Output response of the magnetic levitation 

system, (a) Ball position, (b) Control input. 
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Figure 9: Output response of the magnetic levitation 

system due to sinusoidal input with amplitude of 

0.02 meter and period  of 8 sec. 
 

 

Figure 10: Ball position due to 0.02 meter step 

disturbance (d) at the output of the system. 

 

 

 

 

Figure 11: Ball position for step change of 0.01 meter of the 

reference input (r) of the closed-loop system. 
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Figure 12: Ball position for step change of 0.01 meter of 

the reference input (r) of the closed-loop system for 

different values of weighting matrices R and Q. 

 

VI. Conclusions 

this paperthe problem of a magnetic levitation 

control design is addressed and the following 

conclusions are made: 

1. The analysis and design procedure of the 

proposed method using 2-DOF LQG control 

scheme is presented and a linearized state-space 

model of the magnetic levitation is derived.  

2. It is found that the proposed controller 

perfectly track the reference input and attenuate 

the effect of the disturbance at the output of the 

system(see figure 8, 9, 10).  

3. The proposed control scheme exhibits robust 

behavior to system parameter variations (see 

figure 11).  

4. Finally, the design tuning parameters can be 

used to have a set of stabilizablecontrollers  and 

the one that presents the optimum  performance 

can be selected (see figure 12).   
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