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Abstract 
    In this study, the vibration suppression of smart 

structure is performed by using piezoelectric 

patch structure. The smart structure consists of a 

beam, as a host structure, and piezoelectric 

patches, attached to the surface of the beam, as 

actuation and sensing elements. Two sources of 

instabilities, namely, the observer spillover and 

the control spillover, are considered in the current 

design of the controller based on a reduced order 

model of the large scale system. 

     To design a controller, that will attenuate the 

vibration, the balance realization is used to select 

the reduced order model that is most controllable 

and observable. Eight state is selected for the 

reduced model in the present work. 

    The sliding mode observer, which based on the  

equivalent control, is designed to estimate eight 

states of the reduced model where the state 

estimation error is proved bounded. By using the 

estimated state via sliding mode observer an 

optimal LQR controller is designed that attenuate 

the vibration of a smart cantilever beam using 

piezoelectric element. To overcome the control 

spillover problem, an avoidance condition was 

derive, that will ensure the asymptotic stability for 

the proposed vibration control design.  

    The numerical simulations are preformed to 

test the vibration attenuation ability of the 

proposed optimal control. For 10 mm initial tip 

displacement, the piezoelectric actuator found 

able to reduce the tip displacement to about 1.3 

mm after 15s, while it equal to 7 mm with the 

open loop case.  

   The simulations show, also, that the optimal 

control action is performed with minimum effort 

where only 30 voltage is required while 

piezoelectric actuator is saturated at 200 voltage.  
 

1. Introduction 
     Vibration control of flexible structures is of 

great interest, as light structures in all engineering 

applications are getting much more important. 

One way of making the structure as smart one is 

done by the use of piezoelectric materials. These 

smart materials can be used as sensors and 

actuators, they are flexible enough to be placed in 

a variety of places and have the capacity to work  

 

 

in high frequency ranges [1]. The system is called 

a smart structure because it has the ability to 

perform self-controlling. The technology of smart 

structures, of those with piezoelectric patches, 

have received much attention in recent years, 

because piezoelectric materials have simple 

mechanical properties, small volume, light 

weight, efficient conversion between electrical 

and mechanical energy, and good ability to 

perform vibration control [2]. One of the 

application of piezoelectric smart structures is the 

control and suppression of unwanted structural 

vibrations [3]. The electricity for the piezoelectric 

is produced by pressure (Direct Effect). 

Conversely,  a  piezoelectric  material  deforms  

when  it  is subjected  to  an  electric  field  

(Converse  Effect).  The piezoelectric sensor 

senses  the  external  disturbances  and generates  

voltage  due  to  direct  piezoelectric  effect  while 

piezoelectric  actuator  produces  force  due  to  

converse piezoelectric effect which can be used as 

controlling force [4]. 

     Mechanical structures are systems with 

continuous, distributed parameter. To simulate 

their behavior under inertia and external loads, 

very few analytical solutions for specific 

situations are available. For this reason, the 

discretization of these structures is the basic step 

for a static and dynamic further analysis. One 

possibility for this step is provided by the Finite 

Element (FE) Method. In mathematical terms, 

Finite Elements are a numerical method for 

solving systems, which generally used to 

eliminate all spatial derivatives by increasing, at 

the same time, the number of the resulting new 

equations in the system [5]. 

    In the finite element modeling, the structure is 

modeled to retain large number of degrees of 

freedoms. In active vibration control, the use of 

smaller order model has computational 

advantages. Therefore, it is necessary to apply a 

model reduction techniques  in order to get a 

reduced model size for which the the control law 

can be designed. One of these techneques is based 

on balance realization method [6]. The approach 

taken for reduction the order of a given model 

based on removal the coordinates, that are the 
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least controllable and observable. To implement 

this idea, a measure of the degree of 

controllability and observability is required [7]. 

    For closed-loop system, it is not always 

possible to get a control law that cause 

eigenvalues to have the required and desired 

‎values. This problem raises the concept ‎of 

controllability. The system is completely 

controllable if every state variable ‎can be affected 

in such a way as to cause it to reach a particular 

value ‎within a finite amount of time by some 

unbounded ‎control. However, an alternative, more 

useful measure is provided for asymptotically 

stable systems of the form given by equations by 

defining the controllability gramian. Gramian 
matrices can be used for checking if a system is 

controllable and observable [8]. 

    To control vibration of a piezoelectric smart 

structure, a controller usually designed based on a 

reduced order model (ROM) of the system form, 

whereas, FE models inevitably have a large 

number of degrees of freedom.  When such a 

ROM based controller is applied to the full order 

system, actuator forces for reducing the vibration 

of the lower modes will also influence the 

residual modes of the structure and produce 

undesirable vibration due to the un-modeled 

dynamics. This phenomenon is known as control 

spillover [9]. Spillover phenomenon occurs 

because the unmodeled dynamics, which are not 

included in reduce order model, will be excited. 

     Similarly, the sensor will sense the deflection 

not only from the lower modes but also from the 

other modes, giving rise to the so-called 

observation spillover. Spillover effects are 

undesirable and may cause performance 

degradation and even system instability [10]. In 

fact, the only way to avoid a spillover that comes 

from the state estimation or ‎observation process is 

to use an observer that will estimate the states 

with minimal error.   

    Various control strategies have been suggest 

and applied to different flexible systems in order 

to suppress vibration of flexible structures. Some 

of these studies are feedback control, linear 

quadratic regulator (LQR) approach [11],    

control,    control [12] and sliding mode control 

[13]. The theory of optimal control is concerned 

with operating a dynamic system at minimum 

cost. The case where the system dynamics are 

described by a set of linear differential equations 

and the cost is described by a quadratic function 

is called the LQ problem. The linear-quadratic 

regulator provides one of the main results in the 

theory. The settings of a (regulating) controller 

governing either a machine or process are found 

by using a mathematical algorithm that minimizes 

a cost function with weighting factors. The cost 

function is often defined as a sum of the 

deviations of key measurements from their 

desired values. Often the magnitude of the control 

action itself is included in this sum so as to keep 

the energy spent by the control action itself 

limited [11]. The LQR is the most commonly 

used controller in smart structures [14-17]. 

     The controller requires state measurement; an 

observer is designed to estimate the states. 

Observers are dynamic systems that can be used 

to estimate the unavailable state variables of a 

plant. ‎Luenberger observer  [18], is the most 

famous‎ that used a dynamical linear system to 

generate estimates of the plant states. In some 

cases, the inputs are unknown or which led to the 

development of the unknown input observer. For 

the smart beam, which modeled by a finite 

elements with a reduced number of states, the 

remaining states which are acting on the reduced 
model will be regarded as unknown inputs. ‎   

     Many researcher interested with the sliding 

mode observer design for uncertain dynamical 

‎systems; several observers design are given by 

Utkin [19], Walcott, et al [20], Zak, et al  [21], 

Edwards and Spurgeon  [22], and Slotine, et al 

[23]. Despite the robustness property to the 

sliding mode observer, the present of unknown 

inputs (the remaining states) that do not satisfy 

matching condition will definitely cause error in 

the estimation process. The main advantage of 

using sliding-mode observers is that, while in 

sliding, they are insensitive to the matched 

unknown inputs. Moreover, they can be used to 

reconstruct unknown inputs, which could be a 

combination of system disturbances [24].   

    The aim of the present paper is to design an 

optimal LQR controller based on sliding mode 

observer to attenuate the vibration of a smart 

cantilever beam using piezoelectric element. The 

model utilized for control design purpose is the 

reduced order model that is obtained according to 

the balance realization method.  Based on the 

equivalent control, the SMO is designed to 

minimize the estimation error which it is a basic 

requirement to avoid observer spillover danger.  

Moreover the control spillover is eliminated in 

our proposed vibration suppression control design 

via deriving the avoidance condition.  
 

2. Modeling of Smart Cantilever Beam 

Using Euler Bernoulli Beam Theory 
     The model of clamped-free flexible beam 

studied here is given in Fig.1. The cantilever 

beam bonded with collocated piezoelectric 

sensor/ actuator pair at the free end. The 

piezoelectric material is the Lead-Zirconate-

Titanate (PZT) which it is the most popular 

piezoelectric materials. By using the Euler-

Bernoulli beam equation, the infinite dimensional 

mathematical expression of the beam can be 

written as follows [25]; 
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                               ….  (1) 

 

    Where        ⁄            is the deflection 

along the  -axis,   is the Young's modulus,   is 

the moment of inertia,   is the cross sectional 

area, and   is the density of the beam. The partial 

differential equation (PDE) given by Eq. (1) can 

be solved by using the assumed mode approach, 

which yields finite dimensional ordinary 

differential equation set.  

     The dynamic equation of the smart structure is 

obtained by using both regular beam element and 

piezoelectric beam elements. The mass and 

stiffness matrices of the smart structure include 

sensor/actuator mass and stiffness [26]. The entire 

structure is modelled in state space form using the 

Finite Element Method (FEM) by dividing the 

structure into four equal finite elements. The 

sensor and actuator were integrated on the top and 

bottom surfaces of the end element of the beam. 

A  beam  element  is  considered  with  two  nodes  

at  its  end. Each node is having two degree of 

freedom (DOF) (translation and rotation) is 

considered. The function that will describe the 

element translational and rotational state at each 

point is named as the shape function of the 

element which are derived by applying boundary 

conditions. The mass and stiffness matrix is 

derived using shape functions for the beam 

element. When a system vibrates, it undergoes 

back and forth motion, it has transverse 

displacements, so all positions vary with time, 

and therefore, the system has velocities and 

accelerations. Mass times acceleration as inertia 

force appears in the governing differential 

equation of the beam, which is given in Eq. (1), 

the equation of motion, involves a fourth order 

derivative w.r.t.    and a second order derivative 

w.r.t. time (acceleration). The solution of the Eq. 

(1) is assumed as a cubic polynomial function of 

  given by: 

                 
       

            …  (2) 

 

     Where      is displacement function which 

satisfies the fourth order partial differential 

equation, Eq. (1). The constants      to      be 

obtained by using the boundary conditions at both 

the nodal points (fixed end and free end). The 

mass matrix, as derived in Appendix A, is  

 

        ∫     
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    … (3) 

    Where    is the mass matrix of regular beam, 

  is the shape function and    is the length of the 

regular beam,    is the mass density of the beam 

material,    is the cross sectional area  of  the  

beam,     is  the  moment  of  inertia  of  the  

beam,  and      is  the modulus  of  elasticity  of  

the  beam  material.  

     Also from Appendix A,  the stiffness matrix is 

obtained in the following form 

   

         ∫       
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    …  (4) 

 

     Where    is the stiffeness matrix of regular 

beam,    is the second derivative of the shape 

function    
    Eventually the equation of motion according to 

the Lagrangian equation is:   
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                                                                     …. (6) 

    Where   ,   ,    ,     are the forces  and  the 

bending moments acting on nodes 1 and 2 

respectively (Fig. (1)). and   is the displacements 

at the nodes,    [              ]
              

and      are Degree of Freedom at node 1 and 2, 

respectively. 

     When  PZT  patches  are  assumed  as  Euler-

Bernoulli  beam elements the elemental mass and 

stiffness matrices  of PZT beam element can be 

computed in similar fashion as [25]: 
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                                                                     ....  (7) 
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     …  (8) 

     The  smart  beam  element  is  obtained  by  

sandwiching  the regular  beam  element  in  

between  the  two  PZT  patches (Fig. 1). 



NUCEJ Vol.9= No.2, 2016                                                                   Al-Samarraie, et al., pp.327 - 341 

 

771 

 

Figure 1: Clamped-free flexible smart beam model 

 

    In which                        is  the  

flexural  rigidity  and                   )  is  

the  mass  per  unit  length  of  smart beam  

element,     is  the  thickness  of  PZT  patches 

thickness  of  Actuator  and  Sensor, and     
    

 

  
    (

     

 
)
 

. So  the  elemental  mass and 

stiffness matrices of smart beam element are: 
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                                                                    ….  (9) 

K =  
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      ….  (10) 

 

2.1 Sensor and Actuator Equations        
     The sensor equation is derived from the direct 

piezoelectric equation, which is used to calculate 

the total charge created by the strain in the 

structure. Piezoelectric materials can be used as 

strain rate sensors. When used so, the output 

charge can be transformed into the sensor 

current      [23]: 

 

              ∫    
  ̇    

     
  

               ….  (11) 

     Where, z = 
  

 
    and    is the second spatial 

derivative of the shape function,     is the 

piezoelectric stress constant. 

     The output current of the piezoelectric sensor 

measures the moment rate of the flexible beam. 

This current is converted into the open circuit 

sensor voltage       using a signal-conditioning 

device with the gain   . Thus [25]:   

 

      [                                 ]
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     [             ]
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 ̇ ]
 
 
 

    ̇     ....  (12) 

 

     Where                  and    is a constant 

vector depends on the type of sensor, its 

characteristics and its location on the beam.  

    The actuator equation is derived from the 

converse piezoelectric equation. The strain 

developed    by the electric field    on the 

actuator layer is given by [27]:  

 

                                                          ….  (13) 
 

     Where,     
     

  
  is the electric field, and  

      is the input voltage applied to the 

piezoelectric actuator in the thickness 

direction   . Then the stress    that developed by 

the actuator is given by: [25] 

 

          (
      

  
)                                 ….  (14) 

 

    Where    is the Young’s modulus of the 

piezoelectric and     is piezoelectric strain 

constant.  

The bending moment in a small cross section 

of the piezoelectric element is given by:       
 

            
   

                                        ….  (15) 
 

    The resultant moment    acting on the beam 

element due to the applied voltage    is 

determined by integrating the stress in Eq. (14) 

throughout the structure thickness as: 
 

                                                  .…  (16) 
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    The control force       produced by the actuator 

that is applied on the beam element is obtained as 

[25]:  
 

               [          ]               ….  (17) 
 

Alternatively,       can be expressed as: 
 

                                                        ….  (18) 

 

where, 

             [          ]                     ….  (19) 

 

3. Dynamic Equation of Smart 

Structure 
     The dynamic equation of the smart structure is 

obtained by using both the regular and 

piezoelectric beam elements (local matrices) 

given by Eq. (9) and Eq. (10). The mass and 

stiffness of the bonding or the adhesive between 

the master structure and the sensor / actuator pair 

is neglected. The mass and stiffness of the entire 

beam, which is divided into four finite elements 

with the piezo-patches placed at only one discrete 

location is assembled using the FEM technique 

and the assembled matrices (global matrices)   

and   are obtained. The equation of motion of the 

smart structure is given by: [25] 
 

     ̈                                    …  (20)  
 

where  ,                and   are the global mass 

matrix, global stiffness matrix of the smart beam, 

the external force applied to the beam, the 

controlling force from the actuator and the total 

force coefficient vector respectively.  

     The generalized structural modal damping 

matrix   is introduced into Eq. (20) by using: [28, 

29 ] 

 

                                                  ….  (21) 

 

where    and   are the frictional damping 

constant and the structural damping constant 

respectively. When applying the cantilever beam 

boundary condition, the system equation of 

motion for the 4-element cantilever beam is: 

     ̈     ̇                                    ….  (22) 
 

    For free vibration condition       equal to zero, 

so the remaining applied force on the system is 

the controlling force       exerted by the 

controller.   

3.1 State Space Model of the Smart 

Beam  
     Many design tools and model reduction in 

modern control theory need a state space form for 

the mathematical model of a plant. Consequently, 

the smart flexible cantilever beam mathematical 

model can be written in state space form as 

follows;  

Let     *
  

  
+=*

  

  
+    ,  ̇ =[

 ̇ 

 ̇ 
]=[

 ̇ 

 ̇ 
]=*

  

  
+   

and  ̈  [
 ̇ 

 ̇ 
]  then the 4-element smart 

cvantilever beam sate space model is;  
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 ̇ 

 ̇ 
]    *

  

  
+    *

  

  
+                  …  (23) 

 

which yields to 
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                                           ….  (24) 

Or 
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]  *
  

           
+ [

  

  

  

  

]  *
 

     
+       

                                           ….  (25) 
 

And in a matrix form 
 

 ̇                                               ….  (26) 

Where 

          . 

    With approperate zero and identity matrices 

dimensions. The sensor voltage is taken as the 

output of the system and the output equation is 

obtained as:  

               ̇    *
  

  
+                ….  (27) 

 

Thus, the sensor output equation in state space 

form is given by: 

     [        ] [

  

  

  

  

]                               ….  (28) 

Or, 

 

                                                ….   (29) 

 

where   [        ]. The single input single 

output state space model (state equation and the 

output equation) of the smart structure developed 

for the system is given by Eqs. (26) and (29): 

 
 ̇               

                          
}                             ….  (30) 

 

with 
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             …  (31) 
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In the following section, the state space model is 

reduced via balance realization to a form and 

dimension more appropriate for controller and 

observer design. 
 

3.2 Model Reduction 

     In the finite element modeling, the structure is 

modeled to retain large number of degrees of 

freedoms. In active vibration control, the use of 

smaller order model has computational 

advantages. Therefore, it is necessary to apply a 

model reduction technique to the state space 

representation. The reduced order system model 

extraction techniques solve the problem of the 

complexity by keeping the essential properties of 

the full model only [6]. For the present work the 

16
th

 order system model obtained from the finite 

element model is reduced to the 8
th

 order using a 

model reduction technique based on balance 

realization. 

     The approach taken for reduction the order of 

a given model based on deleting the coordinates, 

or modes, that are the least controllable and 

observable. To implement this idea, a measure of 

the degree of controllability and observability is 

needed. However, an alternative, more useful 

measure is provided for asymptotically stable 

systems of the form given by equations by 

defining the controllability grammian, denoted by 

  , as [6] : 

 

   
  ∫     

 
                                 ….  (32) 

                                  

And the observability grammian, denoted by   , 

as [6]: 

 

  
  ∫      

 
                                 ….  (33) 

 

     The matrices  ,  , and   defined as in Eq. 

(31). The properties of these matrices provide 

useful information about the controllability and 

observability of the closed-loop system. If the 

system is controllable (or observable), the matrix 

   (or   ) is nonsingular [30]. These grammians 

characterize the degree of controllability and 

observability by quantifying just how far away 

from being singular the matrices    and    are 

[31]. 

    Applying the idea of singular values as a 

measure of rank deficiency to the controllability 

and observability grammians yields a systematic 

model reduction method. The matrices    and  

   are symmetric and hence are similar to a 

diagonal matrix. There  is  equivalent  system  for  

which  these  two  grammians  are  both equal and 

diagonal. Such a system is called balanced 

system, also‎   and     must satisfy the two 

Liapunov-type equations: 

 

    
    

         

     
    

        
}                           …(34) 

 

     Now to transform the system to a balance 

realization form, this requires the determination 

of a transformation matrix   that will transform 

the system in Eq. (30) to: 

 

 ̇          
         

}                                       ….  (35) 

 

where                     and      . 

The controllability and observability grammians 

matrices are diagonal and equal  

   ̂   ̂                       

where   ̂         ̂  are the controllability and 

observability grammians for system after 

applying the transformation   and the numbers    

are the singular values of the grammians and are 

ordered such that    

                     

    Therefore the pair         could be 

uncontrollable pair since some of    could be 

equal to zero. Indeed there exist a subsystem (i.e., 

a reduced order model) which is still controllable 

and observable. 

Now the choice  

       
 

                                            ….  (36) 
 

will transform the grammians   
        

  to 

become equal and transform the system in Eq. 

(30) to a balanced realization form. Namely, 

 

 ̂ =  ̂  =Σ                                              ….  (37) 

 

where  Σ can be written in terms of two set of the 

singular values      and      as  

∑  [
     

     
]                                      ….  (38) 

     In this representation       describes the 

“strong” sub-systems to be retained and      the 

“weak” sub-systems to be deleted. Conformally 

partitioning the matrices as 

 

    [
      

      
]

    [
  

  
]             

     [    ]      }
 
 

 
 

                                 ….  (39) 

 

and truncating the model, retaining         ,   

      and       as the reduced system, and 

deleting the “weak” internal subsystems [6]. 
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4. LQR State Feedback Control Design 

    This section is devoted to design a linear state 

feedback controller to the reduced order model of 

the smart cantilever beam using Linear Quadratic 

Regulator (LQR). The LQR is an optimal control 

approach where the main objective of optimal 

control is to determine control signals that will 

cause a process to satisfy some physical 

constraints and at the same time (maximize or 

minimize) a chosen performance index or cost 

function [11]. To design an LQR control to the 

reduced order model of the smart beam the 

Reduced Model (RM) and the Residual Model 

(RSM) [9] are presented here as follows; 

according to the balance realization the linear 

state model for the cantilever beam, as given in 

Eq. (35) are rewritten as follow; 
 ̇                 
 ̇                 
                           

}                  ….  (40) 

 

where      , is the reduced model states, 

        is the residual model states, and  

  [
   

      
       

   
          

           
],  

   [
  

   

  
       ], 

   [  
     

       ]  

     The pair          is the controllable pair and 

         is the observable pair with highest 

controllability and observability grammian. From 

Eq. (40), the reduced model of  the transformed 

model, which given in Eq. (35), is 

 

 ̇                                               ….  (41) 

 

In the second step the performance index,  , is 

defined for the linear regulator problem as [6];  

 

  
 

 
∫    

             
 

 
                  ….  (42) 

 

where   and   are symmetric positive definite 

weighting matrices. The larger the matrix  , the 

more emphasis is placed by optimal control on 

returning the system to zero, since the value of x 

corresponding to the minimum of the quadratic 

form   
      is    . On the other hand, 

increasing   has the effect of reducing the 

amount, or magnitude, of the control effort 

allowed [6].   

    The optiumal control law that will minimize   
is given by [32]. 

 

                                 ….  (43) 
 

where    is the solution to the algebraic Riccati 

Equation [32]. 

          
     

      
             (44) 

 

     The linear controller, as in Eq. (34), that 

grantted asymptotic stabilty of the reduce model, 

may also cause the unstability for the system 

dynamic which named the control spillover. To 

avoid control spillover the avidness condition is 

derived below with a brief presentation of the 

spillover problem.  
 

4.1 Control Spillover Problem and 

Avoidance Condition 
     To control vibration of a smart structure, a 

controller is usually designed based on a reduced 

order model of the system. When such a reduce 

order model based controller, is applied to the full 

order system, actuater force for reducing the 

vibration of the lower modes will also influence 

the residual modes of the structure and produce 

undesirable vibration due to the unmodeled 

dynamics. This phenomenon is known as control 

spillover [9]. Spillover phenomenon occurs 

because the unmodeled dynamics, which are not 

included in reduce order model, will be excited. 

In order to avoid the control spillover, an 

avoidnace condition is derived as follows; let the 

matrix   be defined as;  

 

  [
            

            
]         (45) 

 

which represent the whole model matrix after 

applying the proposed LQR control. In order to 

avoid control spillover the matrix   must be 

Hurwitz with its minimum absolute real 

eigenvalue is larger than  the absolute  real 

eigenvalue of the matrix   (Eq. (43)).  Namely, if 

  
  represent the real term to eigenvalue of   and 

  
  represent the real term to eigenvalue of    

then the avoidance condition is; 

   

      
     

|  
 |     

     
|  

 |     

 

     For a large difference between    and    the 

vibration is attenuated effectively since the 

eigenvalue placed at    is the dominant one 

which shaped the cantilever beam response. 
 

5. Sliding Mode Observer 
    For a large scale system, like the vibration 

control problem, the control spillover is not the 

only source for instability. There is another source 

of instability comes from imperfect or unprecise 

estimation for the states that are required for 

feeding back in the control law [13]. In fact the 

only way to avoid spillover that comes from the 

state estimation or observation process is to use 

an observer that estimates the states with minimal 

error. In the present work the Sliding Mode 

Observer (SMO) is used to estimate the states 

which it required in the control law (Eq. (34)). 
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     The  main  advantage  of  using  sliding model 

observer  is  that  when the observer is  in sliding 

mode, it is able to ensure that the difference 

between the system and observer outputs 

convergence to zero in finite-time even in the 

presence of the unknown   inputs.   Moreover, the 

SMO can be used also to reconstruct unknown 

inputs using equivalent control method [33]. By 

unknown input, we mean the residual term 

        for the    dynamics (Eq. (40)) and the 

corresponding reduced order model in Eq. (41). 

    The general procedure for designing a sliding 

model observer  for a linear system with unknown 

input are derived in the present work. For the 

linear time invariant system; (Eq (40)) 

 
 ̇               
                               

}                        ….  (46) 

where the unknown input           and 

            . Now decompose    to  

   [    ]  and    to     [    ], then 

the output    is: 

 

                                          ….  (47) 

 

where        ,                    

       and             . Accordingly Eq. 

(46), in terms of    and   , can be written as 

  
 ̇                     
 ̇                     

}         ….  (48) 

 

where            ,      ,               

and          . Equation (48) can be written in 

terms of     and   as follows;  

 

 ̇   ̃      ̃     ̃    ̃  

 ̇   ̃      ̃     ̃    ̃  
}           ….  (49) 

 

where    is replaced by, 

 

      
                                          ….  (50) 

 

And,  

 ̃            
    ,   ̃        

  ,   

 ̃                              
     

 ̃                  
    

 ̃    ,  ̃            

 ̃    ,,   ̃           ,  

Since |  |   , the transformation matrix 

between         and       , 
 

*
  

 +    *
  

  
+  [

              

    
] *

  

  
+   ….(51) 

 

is nonsingular. 

    To this end the proposed SMO to the system 

dynamic model as given in Eq. (49), is as follows; 

 ̇̂   ̃   ̂   ̃   ̂   ̃     

 ̇̂   ̃   ̂   ̃   ̂   ̃     
}           ….   (52) 

 

     The error dynamics between the observer (Eq. 

(52)) and the system (Eq. (49)) is governed by 

  

 ̇   ̃      ̃         ̃  

 ̇   ̃      ̃        ̃    
}            …  (53) 

where     ̂    and     ̂   . To examine 

the stability of the error dynamics, the equivalent 

control is utilized as follows; first the output error 

   is guaranteed to reach zero value in finite time 

if   is selected as a discontinuous function of    
 

   ̃                                     ….   (54) 
 

where         is the signum function defined as 

follows; 

 

   (  )  {
            

          
                         ….  

(55) 

 

and   is the discontinuous gain that must satisfy 

the following condition 

 

  | ̃      ̃   |                                   ….  (56) 

 

If     satisfy the Inequality  (56), then the sliding 

motion will ocuure on the sliding surface      

after a finite time. By taking the initial condition 

for observer design as; 

 
  ̂   ̂                                           ….  (57) 

 

and with    as in Eq. (49), we have       ̇  

   from the first instant i.e.,     . The error 

dynamic stability based on the equivalent control 

is examined here as follows; 

 

{
 ̇   ̃      ̃         ̃  

 ̇   ̃      ̃        ̃    
}
  

 

 {
 ̇   ̃           ̃  

   ̃          ̃   
} , 

which yields  

{
 ̇   ̃      ̃         ̃  

 ̇   ̃      ̃        ̃    
}
  

  

{
 ̇  ( ̃     ̃  )   (  ̃   ̃ ) 

     ̃      ̃                                       
}                        

                                                                  .…  (58) 

 

where     is computed at     ̇   .  

     From Eq. (58) the unknown input term 

(  ̃   ̃ )  in the estimation error dynamics 

will prevent the error    from decaying 
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exponantionaly to zero where it represent  the 

error source in the observation process. In fact, 

this term is the source of observer spillover that 

may cause instability in system response. 

Minimizing the error in the observation process is 

not an easy task but it influenced by the size of 

the reduced model and the selected    matrix. 

 

 

6. Simulation Results and Discussion 
    The simulation results for a cantilever beam, 

which it subjected to an initial tip deflection, are 

presented in this section where the MATLAB 

software is used as a simulator to the cantilever 

beam system. The physical and geometrical 

specifications for the beam are given in Table (1) 

below. 

Table 1:  The physical and geometrical specification for the flexible cantilever beam and the 

piezoelectric 

Physical Specification Cantilever Beam (st-st 304L) Piezoelectric 

Length L=300 mm la =75 mm 

Width b =30 mm b= 30 mm 

Thickness tb =0.5 mm ta = 0.35 mm 

Young modulus Eb =193.06 Gpa Ep = 68 Gpa 

Density ρb =8030 Kg/m
3
 ρp = 7700 Kg/m

3
 

Damping coefficients α = 0.001  &  β = 0.0001  

 

     Three steps are performed in the present work 

toward designing an active vibration control to 

the cantilever beam. In the first step, the natural 

frequencies for derived mathematical model of 

the beam (Eq. 47) are calculated and compared 

with the natural frequencies obtained from the 

ANSYS program. The results are found in Table 

(2) which show a good agreement. This proves 

that the derived model represent the system 

dynamics at least with respect to the dominant 

natural frequencies.  

     Also the balance realization and order 

reduction process for the system model had  been 

performed to reduce its states  form (16)  state to  

(8) state,  without  affecting its  dominant  mode.  

Fig (2) shows the bode plot for the original 

system and balanced reduced system model with 

dimension equal to eight and four. The figure 

clarify the matching between the original system 

and the reduced system of dimension (8) for the 

first four dominant modes. 

Table 2: Natural frequency results of the 

system 
Natural 

Frequency  

MATLAB 

(Hz) 
ANSYS 

(Hz) 
Error% 

f1 4.4 4.399 0.022 

f2 27.609 27.57 0.141 

f3 77.814 77.202 0.792 

f4 153.5 151.3 1.45 

 

 

Figure 2: Bode plot for original system model and balanced reduced system model with 4 and 8 

states 
 

     In the second step, the sliding mode observer 

is designed to the reduced order model. For the 

reduced model of dimension eight, the estimated 

output using the SMO states (      ,    is the 
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estimated eight states) is compared with actual 

output in Fig. (3). Due to the discontinuous term 

injected in the SMO (   in Eq. (43) with   
   )), the estimated output is chatters around the 

actual piezoelectric output. This is more clarified 

in Fig. (4) where the error between the actual 

output and the estimated output (Eqs. (47) & (52)) 

is plotted. The chattering effect, which will lead 

to inaccurate states estimation, can be removed by 

replacing the signum function (Eq. (55)) with a 

continuous approximate function. This function, 

among many approximations to the signum 

function [34], is the arc tan function; 

    (  )  
 

 
                        

     Replacing         by the approximation 

given above will prevent chattering and 

smoothing the values of the estimated states Figs 

(5) and (6).    

     By using the estimated states, the designed 

control law based on the LQR approach is applied 

to the cantilever beam dynamic and the system is 

simulated for 10 mm initial tip displacement. 

Depending on the reduced order model dimension 

that selected according to the singular values, the 

LQR controller is designed accordingly and the 

new system eigenvalues are found in Table (3). 

Table (4) shows that by using reduced model of 

dimension two, four or six that can be selected 

according to the singular values, the control LQR 

does not change the value of the minimum 

absolute eigenvalue. But a good vibration 

damping and change in the value of the absolute 

minimum eigenvalue can be obtained when using 

the reduce model of dimension eight. 

Additionally, with the reduce model of dimension 

ten, the increase in the value of the minimum 

absolute eigenvalue is less than that the case of 

dimension eight. So the best choice of the reduce 

model dimension is eight.  

     The first set of numerical simulation to the 

control system and the SMO uses a  0.0001 

second as a period of integration and with the 

approximate signum function in the observer 

design as defined above. In Fig. (7) the controlled 

tip displacement with the actual system output is 

compared, where, as shown, the amplitude is 

reduced to 80.6 % with respect to open loop after 

15 second. In addition, the control input voltage 

to the piezoelectric element is plotted in Fig. (8), 

where, as can be seen, the control input started 

after 2 second. This delay in applying the control 

voltage is to prevent a high voltage required when 

it is computed from the first instant. This comes 

from the inaccuracies in states estimation during a 

small period after initiation. Also from Fig. (8) it 

can be seen that the maximum voltage does not 

exceed 30 volt which it is a direct consequence of 

using optimal control approach in designing  . 

 
Figure 3: The actual piezoelectric output and 

the estimated output 

 
Figure 4: The error between the actual and 

the estimated output 

Figure 5: The error between the actual 

output and the estimated output (with 

removed chattering) 
 

 

Figure 6: The actual piezoelectric output and 

the SMO output  (with removed chattering) 
 

 

Figure 7:  Tip Displacement for open loop 

and closed loop control system 
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Figure 8: The control input voltage to the 

piezoelectric 
 

 

 

 

 

Table 3: System eigenvalues and controlled 

system eigenvalues 

System Eigenvalues  New System Eigenvalues 

-69.181 +1003.5i -69.379 + 1003.5i 

-69.181 - 1003.5i -69.379 - 1003.5i 

-13.479 +  482.54i -13.794 + 482.54i 

-13.479 -  482.54i -13.794 - 482.54i 

-1.4057 + 159.21i -1.4767 + 159.21i 

-1.4057 -  159.21i -1.4767 - 159.21i 

-0.022488 + 19.886i -0.27042 + 19.886i 

-0.022488 - 19.886i -0.27042 - 19.886i 

 

Table 4: Minimum absolute eigenvalues for open and closed loop 

Reduced 

Model 

Dimension 

R Q 

Minimum  

Absolute Real 

Eigenvalue    

(Open Loop) 

Minimum 

Absolute Real 

Eigenvalue 

   

(Closed Loop) 

Maximum 

Control 

Input 

Voltage 

2 1 300*diag [ 5  5 ] 

0.022488 

0.02073 0 

4 1 300*diag [ 1  1  2  2 ] 0.02073 0 

6 1 300*diag [ 1  1  5  5  4  4 ] 0.02073 0 

8 1 300*diag [ 1  1  5  5  5  5  40  40 ] 0.27042 30 

10 1 300*diag [ 1  1  5  5  5  5  40  40  5  5] 0.2245 28.5 

 

     In real application of the proposed controller it 

may be difficult to use 0.0001 second as a time 

period for the observer simulation that estimate 

the states after each such time period and for the 

control input where it is required to change the 

control voltage after each 0.0001 second. In order 

to approach the real situation, the time period for 

the observer is taken equal to 0.001 second (i.e., 

the change in the estimated eight states happened 

after each 0.001 second), while 0.025 second is 

the chosen time period where the control input 

changes. Consequently the second set of 

numerical simulation is based on these time 

numerical values for both; the observer simulation 

period of time and for the time period required for 

the control input voltage to change while the time 

period for the control system simulation is still 

equal to 0.0001 second. Fig. (9) plots the actual 

output and the estimated output with time. The 

effectiveness of the SMO can be detected from 

this figure where the idea is to force the estimated 

output to follow the actual one in a short time. 

After that, the estimated states will be used in the 

control law (Eq. (43)) which will attenuate the 

beam vibration. The tip displacements of the open 

and closed loop are plotted with time in Fig. (10), 

where the amplitude of oscillation is reduced 

greatly after 15 second to reaches  about 80.4%  

with respect to the open loop system. 

Additionally, the control input voltage is shown in 

Fig. (11), where, as can be seen, the vibration 

suppression ability is nearly the same as in the 

first set of simulation. This enhances the 

applicability of the proposed controller.  

 

Figure 9: The actual piezoelectric output and 

the SMO output 
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Figure 10: Tip Displacement for open loop 

and closed loop control system 

 

Figure 11: The control input voltage to the 

piezoelectric 
 

7. Conclusions 
    In this paper, the state space model is obtained 

using the finite element approach and modal 

analysis resulting after appropriate modal 

reduction. During the theoretical calculations, the 

16
th

 order system model obtained from the finite 

element model is reduced to the 8
th

 order using a 

model reduction technique based on balance 

realization without affecting its dominant modes.  

    As a basic requirement to the control design, 

the sliding mode observer is designed which 

estimates the eight states of the reduced model. In 

spite of the presence of the unknown inputs, 

which due to the residual model in the observer 

dynamics, the SMO forces the output, which is 

determined from the estimated states, to follow 

the actual output. This is taken place after 

approximately two second. After that, the reduced 

model states are estimated with bounded error.  

    To overcome the chattering problem in 

observer dynamics the signum function is 

replaced with the approximation given by the 

arctan function with appropriate parameters. The 

chattering is, consequently, prevented and the 

estimated states values are smoothened.  

    Using  the estimated states, an LQR approach 

was designed based on the reduced order model.  

The control spillover was avoided by satisfying 

the avoidance condition where the minimum 

absolute real eigenvalue is 10 times that for the 

matrix    (Table 4). With the proposed LQR 

control and the SMO, the results show that for 10 

mm initial tip displacement, the piezoelectric 

actuator reduce the tip displacement to about (1.3 

mm) after 15 s.  
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Appendix A: Derivation of Beam Mass and Stiffness Matrices 
 

Consider the derivative of      , which given in Eq. (1), as: 
  

  
                

     (A1) 

then at       ,                 and    
  

  
      .   Also  at      ,  

                     
      

  , 

and,     
  

  
                   

  

where                      are Degree of Freedom at node 1 and 2, respectively and   is the length of the 

regular beam. The relation between                  and the constants      to      be represented in a matrix 

form as, 
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]    (A2) 

Solving for     to     yields; 
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]     (A3) 

Substituting the constants obtained from Eq. (A3) into (2) and by rearranging the terms, the final form for 

     is obtained as: 
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 [                                                 ]  [

  

  

  

  

] (A4) 

Or                        (A5)      

where   is the shape function and   is the displacements at the nodes, which are given by 
 

  
 

  
 [                                                 ]      (A6) 

   [              ]
              (A7) 

The strain energy   and the kinetic energy   for the beam element with uniform cross section in bending is 

obtained as:  
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∫ [ ̇        ]   [ ̇       ]   

 

  
    (A9) 

 

where    is the mass density of the beam material,    is the cross sectional area  of  the  beam,     is  the  

moment  of  inertia  of  the  beam,  and      is  the modulus  of  elasticity  of  the  beam  material.  The 

equation of motion of the regular beam element is obtained by using the Lagrangian equation:  
  

  
 *
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+  [  ]            (A10) 

 

For free vibration     . The kinetic energy   can be expressed in terms of the shape function   and   are 
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Accordingly we get 
   

  ̇ 
    ̇                                                     (A12) 
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where    is the mass matrix of regular beam  

        ∫     
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Also for the strain energy, 
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we obtain     
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 السٌطرة على تخمٌد الإهتزاز لعتبة مرنة مع إستخدام المخمن ذو الشكل المنزلق
 

 عماد عبد الحسٌن عبد الصاحب               مزة        محسن نوري ح                  شبلً احمد السامرائً        
 الجامعة التكنولوجٌة                          الجامعة التكنولوجٌة                                           الجامعة التكنولوجٌة 

 قسم الهندسة المٌكانٌكٌة             كٌة                     قسم الهندسة المٌكانٌ                        والنظم السٌطرة هندسة قسم

 

  :الخلاصة
. ٌتكون الهٌكل الذكً من المواد الكهرضغطٌة تنفٌذ إخماد الاهتزاز فً الهٌاكل الذكٌة، باستخدام فً هذه الدراسة، تم

عتبة كجزء اساسً، ومن المواد الكهرضغطٌة الملصقة على سطح العتبة والتً تمثل المؤثرات والمتحسسات. هناك 
ٌر تداعٌات السٌطرة الغٌر مباشرة، حٌث تم المخمن وتأث تداعٌاتعدم الاستقرار فً العتبة، وهما تأثٌر  مصدران من 

من النظام  الاخذ بنظر الاعتبار هذٌن المصدرٌن فً التصمٌم الحالً لنظام السٌطرة على أساس نموذج مخفض 
 الأصلً.

( لاختٌار نموذج Balance realizationلتصمٌم نظام تحكم والذي من شأنه تخفٌف الاهتزاز، تم استخدام طرٌقة )
ون هذا النموذج اكثر قابلٌة على السٌطرة والتخمٌن. تم اختٌار ثمانٌة متغٌرات حالة للنموذج المخفض مخفض حٌث ٌك

 عن النظام الأصلً.
ان نظام المخمن المنزلق، والذي ٌستند على المسٌطر المكافئ، ٌهدف إلى تقدٌر ثمانٌة متغٌرات حالة حٌث إن الخطأ 

 LQRتخمٌن المتغٌرات عن طرٌق المخمن المنزلق، تم تصمٌم وحدة تحكم  فً التخمٌد محدد كما تم إثباته. باستخدام
الأمثل من شأنها أن تخفف من اهتزاز العتبة الذكٌة وباستخدام العنصر الكهرضغطً. وللتغلب على مشكلة تأثٌر 

قترح والذي السٌطرة غٌر المباشرة، تم اشتقاق شرط تحقٌق الاستقرارٌة والذي ٌضمن استقرار المسٌطر للتصمٌم الم
 الاهتزاز فً العتبة. سٌقلل

 01باستخدام المحاكاة العددٌة تم اختبار قدرة نظام السٌطرة المقترح لتقلٌل وتخمٌد الاهتزاز. تم ازاحة طرف العتبة 
ملم  0.1( قادرة على تقلٌل الازاحة إلى حوالً piz) مادة الكهرضغطٌةلل( actuatorمم، حٌت وجد بان المؤثرات )

ملم فً الحالة الحرة.  ومن خلال المحاكاة تبٌن، أٌضا، أن نظام السٌطرة الأمثل  7فً حٌن أنه ٌساوي  انٌة،ث 01بعد 
فولت وهو الحد الاعلى  011فولت فقط من أصل  11ان المطلوب هو ٌتم تنفٌذه مع الحد الأدنى من الجهد حٌث 

 (.Pizلتشغٌل المادة الذكٌة )


