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Abstract
In this study, the effect of support values on
the natural frequency and critical flow velocity
of   a straight pipe conveying laminar flowing
fluid is studied. The aim of this work is
deriving a new analytical model to perform a
general study to investigate the dynamic
behavior of a pipe under general boundary
conditions by considering the supports as
compliant material with linear and rotational
springs. This model describes both the
classical (simply support, free, built, guide)
and the restrained boundary condition and it is
not required to derive a new frequency
equation if the boundary conditions is changed
,also the result will be near to reality by
knowing the physical parameters for the
compliant material and the pipe.

Keywords:Pipe conveying fluid, Natural
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1.Introduction
The study of the dynamic behavior of a fluid
conveying pipe, started in 1950, despite  the
great importance of this subject in pumps, heat
exchanger, discharge lines, marines risers,
etc.., the first observation of this phenomena
was made by Ashley and Havilland [1], when
examining the above ground Trans-Arabian oil
pipe line. They considered the problem as a
simply supported pipe.
The free vibrations of pipes conveying fluid
was studied by Huang [2], taking into account,
the effects of rotary inertia on both the fluids
and the pipes, the shear deformation of the
pipes and the leteral inertia force due to the
moving fluids. The theory of dynamics
of pipes containing flowing fluid has been of a
great interest for engineers in various fields.
The results showed that the fluid forces and the
pipe forced will interact with each other. Singh
and Mallik [3] investigated the effect of
harmonic fluid on stability using bolotin,s
concept, it was concluded that, the same
regions of instability also exist in continuous

pipe when it was parametrically exited and the
phenomenon was like that of a beam subjected
to an axial harmonic forces. The mass ratio did
not have any significant effect on the regions
of
instability within the range of parametric
values considered. With the increase in the
pressure and the velocity of the fluid, the
instability regions became wider and were
shifted to lower frequencies, damping in the
pipe reduced the extent of the instability
regions and a finite value of the excitation
parameters was required to start the instability.

Abraham [4] studied the vibration and stability
of straight pipe systems conveying fluid, either
steady or fluctuating flow. The supports
considered are different in type and positions,
this work perfferent a general study to
investigate the dynamic behavior for a pipe
with N-spans and general boundary conditions
and that by considering the supports as
compliant boundary material with linear and
rotational springs and dampers. It was
concluded that the support position and values
had a significant on dynamic characteristics of
the pipe.

Dian etal [5] analyzed the free lateral vibration
of thin annular with variable thickness and
circular plates. Study was adopted the finite
element method to obtain the natural
frequencies and mode shapes of the
axisymmetric and non axisymmetric thin
annular. The results showed that the finite
element method was an efficient and
convenient tool for analyzing the lateral
vibration of annular and circular composite
plates with variable thickness.

The effect of induced vibration of a simply
supported pipe conveying fluid with a
restriction, investigated theoretically and
experimentally by Alaa [6], where transfer
matrix approach was implemented to described
the dynamic response of a pipe conveying fluid
and a numerical technique for solving two-
dimensional incompressible steady viscous
flow for the rang of Reynolds
number(5<Re<1000). It was concluded that the
fluid flow through a pipe with restriction
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affected the dynamic behavior of the pipe in
addition to the flow field structure due to
induced vibration.

Wang and Bloom [7] studied the static and
dynamic instabilities of submerged and
inclined concentric pipes conveying fluid
mathematically.

The discrtized dynamical equations using
spatial finite-difference schemes in the case of
steady flow and pulsatile flow. The result was
obtained, showed that the outer pipe length is a
more important design factor than gravity and
friction.

Shintaro and Masaki [8] studied
experimentally the three-dimension dynamics
of hanging tube conveying fluid with varying
the length of the tube, Instabilities to static
buckling, plane or rotating pendulum, sub-
harmonic or to chaotic states, were found
depending on boundary conditions.

In the present study, the free vibration of
elastically supported pipe conveying fluid is
analyzed under general boundary conditions by
considering the supports as compliant material
with linear and rotational springs. The
convergence study is based on the numerical
values. In the numerical examples, the first
three eigenvalues of the Timoshenko beam are
calculated for various values of stiffness of
translational and rotational springs

2.Theoretical approach

Consider a straight uniform single-span pipe
conveying fluid of length L where and are
the translational and rotational spring constant,
it will be considered that the pipe is supported
at the two end points, where the parameters
and are taken to have the same values at all
the supports

(a)

denoted by and .

Figure (1) Considered Timoshenko beams with
(a) the first type and (b) the second type of

translational and rotational springs

The following assumptions are considered in
the analysis of the system under consideration
[9]:
1. Neglecting the effect of gravity.
2. The pipe considered to be horizontal.
3. Neglecting the material damping.
4. The pipe is inextensible.
5. Neglecting the shear deformation and rotary
inertia.
6. All motion considered small.
7. Neglecting the velocity distribution through
the cross- section of the pipe.
Derivation of the equation of motion for stright
pipe with steady flow are available in the
literature Ref.[10].For a single-span pipe
conveying fluid,the equation based on
beabeam theory is given by,

1

….Ref [11]……………..(1)

Stiffness term

Curvature term

Coriolis force term

Inertia force term
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The Coriolis force is a result of the
rotation of the system element due to the
system lateral motion, since each point in
the span rotates with angular velocity [12].
The equation of motion Eq.(1) can be
written in the following non-dimensional
form:

2

where

, , ,

, .

,

: Non-dimensional mass ratio.
: Non-dimensional fluid pressure.

The general solution to Eq. (2) is given
by:

. … 3

where Cj is amplitudes of vibrations and
is the wave numbers. Substituting Eq.

(3) into Eq. (2), a relationship is obtained
between the wave numbers and the

eigenvalues Ω.

4

From these relationships four wave numbers
can be determined as functions of Ω and the

pipe parameters.
To solve the problem of free vibration for a
structure, first its boundary conditions must be
known. The method of solution consists of
formulating the support condition of a pipe in
terms of the compliant boundary material. The
parameter of this material will be represented
by linear and rotational spring. To describe the
classical boundary conditions impedance
values are taken to be zero or infinity values.

2.1.Evaluating Natural Frequency
The flexible-flexible boundary condition may
be written as:-

5

Substituting Eq. (3) into the boundary
conditions Eq. (5) gives:

1-at x=0,

( + +

+ =0

where : dimensionless

rotational stiffness at x=0

2-at x=0,

where : dimensionless

longitudinal stiffness at x=0

3-at x=l,

+

+

+

=0

where : dimensionless
rotational stiffness at x=

4-at x=l,

where : dimensionless

longitudinal stiffness at x=

These four equations can be written in matrix
form as follows:
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This matrix can be written as follows:

where =1,2,3,4

,

,

,

,

,

The non-dimension natural frequency is
evaluated by setting term equal to

zero

For non trivial solution:
i.e.

This is determinant function to ,but

function to therefore the

determinant can be written as,

Therefore the frequency can be written
as, ,

The solution is done by trial and error
procedure, the value of Ω that makes the
determinant vanish can be found which will
represent the non dimensional natural
frequency.
A MATLAB computer program was built for
this purpose.

2.1. Evaluating Critical Velocity
If the natural frequencies of the pipe reach

to zero, the flow velocity in this case is called
critical flow velocity. When the flow velocity
is equal to the critical velocity the pipe bows
out and buckles, because the forces required to
make the fluid deform to the pipe curvature are
greater than the stiffness of the pipe.

Therefore the mechanism underlying
instability may be illustrated by static method
[13], so deleting time dependent term from
equation (2) yields:

… 6

whose its solution takes the form

where and

are constant and can be evaluated by using the
boundary conditions as following:
1- at x=0,

where : dimensionless

rotational stiffness at x=0.
2-at x=0,

.

where :dimensionless

longitudinal stiffness at x=0
3- at x=l,

where :dimensionless

rotational stiffness at x=

4- at x=l,

where :dimensionless

longitudinal stiffness at x=

These four equations can be written in matrix
form as follows:

This matrix can be written as follows:

where =1,2,3,4

Trial and error procedure is used to find the
value of that makes the determinant
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Vanish. From

the non-dimensional critical velocity is

obtained.
A MATLAB computer program was built for
this purpose.

3. Results and Discussions.
3.1. Effect of the Numerical Value of
Support Stiffness.
In order to investigate the influence of stiffness
of the supports on the free vibration
characteristics of   a pipe conveying fluid, the
first three eigen values of the pipe at

with the two

types of translational and rotational springs as
shown in Figure (1) are calculated and three
dimensional plots in Figures. (2), (3), (4), (5),
(6) and (7) respectively to illustrate how the
frequency parameters change with the spring
constants. The stiffness parameters and

are taken as having the values at all the
supports denoted
by , .

for the pipe with the first type of the springs,
and
by , , , f

or the beam with the second type of the
springs.

It is possible to simulate infinite support
stiffness by setting the translational or
rotational stiffness coefficient equal to at

all the supports for comparing the obtained
results with the existing results of the
classically supported pipe. Therefore,
comparative study of the pinned-pinned

and

clamped-clamped

pipe with the classical

solutions given in the Ref. [14] is carried out,
and the results are given in tables 1 and 2.
Also, by setting the translational and rotational
stiffness coefficients equal to zero at all the
supports, a completely free pipe situation can
be obtained.

Table (1) Comparison study of the first two dimensionless
frequencies parameter of the pinned-pinned pipe conveying

fluid for various values of u at .

u
present
work

Ref.[14] present
work

Ref.[14] present
work

0.1 9.865 9.864 39.474 39.478 88.822
1 9.347 9.3460 39.000 39.013 88.340

1.5 8.652 8.652 38.400 38.424 87.728
2 7.579 7.579 37.569 37.583 86.865
3 2.899 2.898 34.946 35.075 84.354
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Table (2) Comparison study of the first two dimensionless
frequencies parameter of the Clamped-Clamped pipe conveying

fluid for various values of u at .

u
present
work

Ref.[14] present
work

Ref.[14] present
work

0.1 22.371 22.370 61.670 61.669 120.900

1 22.082 22.081 61.328 61.340 120.510

1.5 21.711 21.712 60.900 60.921 120.010

2 21.183 21.185 60.301 60.330 119.300
3 19.598 19.613 58.564 58.604 117.280

Figure(2)The first frequency parameter of the pipe
with , .

Figure (3) The second frequency parameter of
the pipe with , .

Figure (4) The third frequency parameter of
the pipe with , .

Figure (5) The first frequency parameter of the
pipe with , , .
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Figure (6) The second frequency parameter of the
pipe with , ,

Figure (7) The third frequency parameter of the

pipe with , , .

It is seen from the figures that
translational springs are much more effective
on the frequency parameters than rotational
springs. The reason of this behavior, the value
of transverse displacement decreasing when
the value of linear stiffness is increasing, this
tends to increasing in natural frequency. But
the value of slope is small decreasing when the
value of rotational stiffness increasing, this
tends to small increasing in natural
frequency.For example, in Figure (3), when the
spring parameter is taken constant, value of

and the parameter is changed from

to , the frequency parameter

changes from 4.096 to 7.87 but, while the

parameter is taken as and the parameter

is changed from to , the frequency

parameter changes from 4.096 to 39.351 .

Increment in the values of parameters and

are more effective on the first frequency
parameter of the pipe than the second and third
frequency parameters. For instance, for the
pipe with the first type of the springs, when the
parameters and are both changed from

to , the first frequency parameter

changes from 1.226 to 21.243, namely,

becomes 17 times greater in this change. On
the other hand, and increase

approximately 14 and 5 times, Because the
value of natural frequency in the first mode is
small and any increasing in and strong

effect in the value of natural frequency but the
natural frequency in the second and third
modes is high and the increasing in and

small effect in the value of natural frequency.
respectively in the considered change.

When the values of and are greater than

and , there is no

remarkable change in the frequency
parameters. This situation can be observed
from the flat area of Figures. (2) to (7). Also, it
is evident from the obtained values of
frequency parameters that, when the
parameters and are taken

as , then, the pipe can be

considered as a pipe fixed at the both ends.

3.2. Effect of Fluid Velocity and Mass Ratio.
The fluid parameters (velocity, pressure,

and mass ratio) have direct effects on the
dynamic characteristics of the system under
consideration. The effect of the fluid flow
velocity and mass ratio will be discussed.

In general the natural frequencies for
steady flow decrease with increasing the fluid
flow velocity. If the velocity of the flow in the
pipe equal zero, then the case will be a normal
beam system and when the flow velocity equal
the critical velocity the pipe bows out and
buckles, because the forces required to make
the fluid deform to the pipe curvature is greater
than the stiffness of the pipe.

Mathematically the buckling instability
arises from the mixed derivative term(Coriolis)

in equation (4) which represents a

forces imposed on the pipe by the flowing fluid
that  is always 90o of phase with the
displacement of the pipe, and  is always in
phase with the velocity of the pipe. This force
is essentially a negative damping mechanism
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which extracts energy from the fluid flow and
inputs energy into the bending pipe to
encourage initially, vibration, and ultimately
buckling [15].

Many studies indicate that the natural
frequencies of a pipe with both ends stationary,
such as the clamped-clamped or clamped-
pinned ends, are nearly independent of the
mass ratio while the natural frequencies of
pipes with one end free to move, such as
cantilever pipe, are strongly affected by the
mass ratio [15].
Figures (8) and (9) shows the variation of the
frequency parameter with flow velocity

parameter for different values of the mass

ratio for the clamped –clamped and pinned-

pinned boundary condition respectively.
There is very good agreement in the values of

with those obtained by Païdoussis and

Issid [16], for the pinned-pinned and clamped-
clamped cases.
Figures (10, 11, 12and 13) show the variation

of the frequency parameter with flow

velocity parameter for different values of

the mass ratio for four types of flexible

support. For and for , there is

no difference in the frequency parameter for
any value of . For intermediate values of ,

there is a slight decrease in the frequency
parameter for increasing values of in

classical boundary condition [16]. The effect
of mass ratio on the natural frequency
depended on the value of rotational and
translational impedance of support. The more
effect happen when the value of stiffness is
small and this effect decreasing when the value
of stiffness is increasing, so less effect happens
at the value of stiffness is large.

Figure (8) Variation of with for various values of

for Clamped- Clamped pipe

Figure (9) Variation of with for various values of
for pinned- pinned pipe.
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Figure (10) Variation of with for various
values of at =100, =10 , =10, =100

Figure (11) Variation of with for various
values of

at =110, =130 , =170, =90

[[[[[

Figure (12) Variation of with for various
values of

at =750, =180 , =450, =250

Figure (13) Variation of with for various
values of at =5, =175 , =520, =380

3. Conclusions
Following the main summarized

conclusions raised by this research:
1-The technique used for modeling the
compliant boundary material in terms of linear
and rotational impedance allows the designer
to describe both the classical and restrained
boundary conditions.
2-The natural frequency of a pipe increases
with the increasing of the linear and rotational
impedance.
3-The linear impedance is much more effective
on the frequency parameters than rotational
impedance. The reason of this behavior, the
value of transverse displacement decreasing
when the value of linear stiffness is increasing,
this tends to increasing in natural frequency.
But the value of slope is small decreasing
when the value of rotational stiffness
increasing, this tends to small increasing in
natural frequency.
4-The values of linear and rotational
impedance are more effective on the first
frequency parameter of the pipe than the
second and third frequency parameters.
5-When the values of linear and rotational

impedance are greater than , there is no

remarkable change in the frequency
parameters.
6-The natural frequency of a pipe increases
with the increasing of the linear and rotational
intermediate impedance.
7- When flow velocity equal zero or critical
value, there is no difference in the frequency
parameter for any value of mass ratio, for
intermediate values of flow velocity, there is
decrease in the natural frequency parameter
with increasing values of mass ratio.
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Appendix (A): parameters of Figure (3)

Table (A1)
Variation of the second frequency parameter of the pipe with , .
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