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Abstract 
 

     The present work deals with fitting literature 

data of liquid – liquid equilibria and to obtain a 

new correlation for non-randomness parameter 

suitable to use in NRTL activity coefficient 

model. 

     New simple correlation is proposed for 

modifying the original three-parameter NRTL 

activity coefficient model to make it a true two-

parameter model. The performance of the 

proposed expression is compared with the original 

three-parameter NRTL activity coefficient model, 

in correlating LLE data of binary systems, as well 

as in predicting binary systems from infinite-

dilution activity coefficients and ternary systems 

from binary data. 
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     To ensure the results had physical significance, 

the obtained parameters were used to predict the 

infinite activity coefficients. Properties at infinite 

dilution are of interest as they usually indicate the 

maximum non-ideality of the system. 

     The model was successfully applied to 

correlate liquid - liquid equilibria, and low 

temperature activity coefficients. A large database 

of data was collected for the investigation and it 

covers a wide range of composition, temperature 

and pressures. It was found that the proposed form 

of non-randomness parameter gave the best 

results. 
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Introduction 
 

     The historical development of thermodynamics 

has been paved by many people throughout 

history; through the process of trial and error we 

have came to accept certain observations as being 

universal. 

     The myriad of methods now available to the 

practicing engineer is evidence that not any one 

method is overwhelmingly superior; as our 
collective understanding grows so do the number 

of models able to describe real mixture behavior. 

As a result practitioners may use more than one 

model to obtain an accurate representation of their 

system. 

     It is usually desired to obtain experimental data 

for the major components in the system under 

study. This is typically in the form of binary 

mixture data in the current industrial practice. The 

binary interaction parameters are introduced. 

Most industrial systems are composed of more 

than ten components which made the selected 

equation calculation not accurate enough 

compared with experimental data result obtained 

selected parameter. 

     Models for the description of real mixture 

behavior are of fundamental importance for the 

synthesis, simulation, design, and operation of 

many separation processes used in industry (e.g. 

distillation and extraction). Since often 60-80% of 

the total costs arise in the separation step, a 

reliable knowledge of the phase equilibrium 

behavior of the system to be separated is of 

special importance to industrial practitioners [1]. 

     Many equations have been proposed for the 

relation between activity coefficients and mole 

fractions and new ones appear every year. There 

are two general assumptions in the application of 

the local composition models. The first is that 

binary phase equilibrium data is sufficient to 

obtain the model parameters. The second is that 

the model parameters are independent of 

temperature since the models are purported to 

have built in temperature dependence. These two 

principles are also applicable to equations of state 

[2].Models like Wilson, NRTL, and UNIQUAC 

have long been used with great success for the 

description of the real behavior of 

multicomponent mixtures, but they are restricted 

due to the limited availability of binary interaction 

parameters [3]. 

     The NRTL equation is suitable for the 

description of complex phase behavior as 

expressed by the Gibbs free energy equation of 

mixing for binary liquid systems with limited 

miscibility. The determination of the parameters 

from the miscibility data are very time consuming 

and gave rise to different solution types depending  

upon the initial guess, when a search method is 

used. One of the major benefits of the NRTL 

model is the increased flexibility in representing 

the GE curve over the entire composition range. 
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The NRTL equation is applicable to partially 

miscible systems as well as completely miscible 

mixtures [4]. 

     Further work was even done in an attempt to 

reduce the NRTL expression to only one 

parameter by introducing predictions based on 

pure component properties and molecular 

structures [5-7], or to reduce the original three-

parameter NRTL activity coefficient models to 

make a two parameter model [8]. However, 

simplification such led to a loss in accuracy, as 

compared to the original form of the NRTL 

equation. 

     The NRTL model was selected for the current 

study because of its wide application range and 

simple implementation. The initial objective of 

this work is to collect the relevant data available 

in the public domain for relevant liquid – liquid 

equilibria, which are commonly used in industry. 

Secondly, to update the NRTL model used to 

estimate liquid – liquid equilibria of these systems 

required in the design of extraction processes. 

Thirdly, to create an algorithm that can be used to 

determine the binary interaction parameters of this 

model from the collected data. Finally, to test the 

capability of the proposed model to correlate 

and/or predict the required properties over the 

composition, temperature and pressure ranges 

found in industrial separation plants. 
 

The Nrtl Equation 
 

     Interpolation and extrapolation of 

thermodynamic data of liquid mixture are 

common necessities in chemical engineering. The 

model of ideal solution is useful for providing a 

first approximation and a convenient base for the 

calculation of real properties. But deviations from 

ideality are frequently significant. These 

deviations are expressed by excess functions, 

which depend on the concentration of the 

components, and the temperature. The most 

important of these is the excess Gibbs free energy, 

because the canonical variables for Gibbs energy 

are temperature and pressure. Since these 

variables can by directly measured and controlled, 

the Gibbs free energy is a thermodynamic 

property of great potential [9-11]. Thus, when 

G/RT=G (T, P) are given, all other 

thermodynamic properties can by evaluated by 

simple mathematical calculations.  

     Activity coefficient i have traditionally been 

calculated from correlating equations for GE/RT 

by applying the following equation: 
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     The NRTL (non random two liquid) was 

originally developed and presented by Renon and 

Prausnitz [11], as an empirical model which could 

improve over the Wilson equation for the 

simultaneous representation of liquid-liquid 

equilibria, heat of mixing, and activity coefficient 

in binary and multicomponent mixtures. 

     This equation is based on Scott’s two-liquid 

model theory, taking into account nonrandomness 

in liquid mixture. The nonrandomness parameter 

 made the NRTL equation applicable to a large 

variety of binary mixtures and gave a good 

prediction of ternary liquid-liquid equilibria based 

on binary data only. 12(12 =21) is a constant 

characteristic of the norandomness of the mixture. 

     The NRTL model was an empirical equation 

based on the local composition representation of 

the excess Gibbs free energy, GE, of liquid 

mixtures. The NRTL expression for the Gibbs 

free energy is [9-11]: 
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The activity coefficient for the NRTL equation of 

component 1 and 2 in a binary mixture are: 
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where, 
 

12 = (g12-g22)/RT                            …..(5) 
 

21 = (g21-g11)/RT                             ….(6) 
 

and 
 

G12 = exp(-1212)                            ….(7) 
 

G21 = exp(-2121)                            .…(8) 
 

gij and gji are the energies of interactions between 

the ii or ij component pairs and 12 is the non-

randomness parameter. 

For multiplication systems, the excess Gibbs 

energy is calculated as follows: 
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where, 
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N is the number of components in the 

system 
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The activity coefficient is obtained by equation 

12: 
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subscript l identify species, j, i, and k are dummy 

indices. 
 

     Using model the solubility data to the Non-

random Two-Liquid (NRTL) activity coefficient 

equation to the solute-solvent solubility data to 

obtain the model binary interaction parameters. 

Also, using the binary interaction parameters to 

predict solubility of the model compounds in 

ternary mixtures (i.e., solute-binary solvent 

mixtures); and as needed, propose correction to 

the interaction parameters. 

     For moderately nonideal systems, the NRTL 

equation offers no advantages over the simpler 

van Laar and three-suffix Margules equations. 

However, for strongly nonideal mixtures, and 

especially for partially immiscible systems, the 

NRTL equation often provides a good 

representation of experimental data if care is 

exercised in data reduction to obtain the 

adjustable parameters. 

     It is superior to the Wilson equation in that it 

can represent liquid-liquid equilibrium (LLE). 

Also, it is simpler in form than the UNIQUAC 

[12] equation but has the main disadvantage of 

involving three adjustable parameters (Gij, Gji, and 

ij = ji) for each pair of components. From both 

practical and theoretical standpoints, it is desirable 

to minimize the number of parameters needed to 

describe as wide a variety of systems as possible. 

The NRTL equation contains three parameters, 

but reduction of experimental data for a large 

number of binary systems indicates that 12 varies 

from about 0.20 to 0.47; yet, when experimental 

data are scarce, the value of 12  can often be set 

arbitrarily; a typical choice is 12  = 0.3 [11]. 

In order to reduce the number of adjustable 

parameters from three to two in the NRTL 

equation and to overcome the forecited 

disadvantage, Renon and Prausnitz [10] 

recommend ij = 0.20 for partially miscible 

systems, and all data in the DECHMA LLE 

collection are correlated with this value for ij. 

For completely miscible systems, Renon and 

Prausnitz [11], from the reduction of experimental 

data for a large number of binary systems, found 

that the third parameter, ij, varies from 0.20 to 

0.47, depending on the chemical nature of the 

constituents. Consequently, they consider  ij to 

be an empirical constant, independent of 

temperature, for which an adequate value can be 

specified a priori according to empirical rules 

based on the chemical nature of the mixture's 

components. However, in a later paper, Renon et 

al. [9] represented ij as a linear function of 

temperature for several mixtures. When ij is 

assigned, the NRTL equation has two adjustable 

parameters, Gij and Gji. 

The rules proposed by Renon and Prausnitz [11], 

which are occasionally ambiguous, classify binary 

systems into seven main groups (according to 

polarity and association of the components in the 

mixture), assigning discrete values (0.2, 0.30, 

0.40, and 0.47) for the ij parameter in these 

groups. Although ij has almost no influence for 

low values of the maximum of the excess Gibbs 

energy of a binary mixture, it is very useful for 

strongly nonideal binaries such as polar – 

nonpolar (alcohol-hydrocarbon) systems. This fact 

suggests a close relationship between nonideality 

of the mixture and the value of the ij parameter 

and, consequently, the likely existence of an 

expression for ij in terms of Gij and Gji. In such a 

way, for a given system, ij should change with 

temperature in a continuous way, decreasing at 

the same time as temperature increases, i.e. 

Tij 1 . 
 

The Nonrandomness Parameter ij 
 

     One of the main benefits of the NRTL equation 

is its ability to represent mixtures exhibiting 

partial miscibility. Unlike the empirically 

modified Wilson equation [12-14] the NRTL 

equation is able to represent multicomponent 

mixtures (i.e. not just binary mixtures) if given an 

appropriate nonrandomness factor. 

     The parameter α is a measure of the non-

randomness of the mixture; when α is zero, the 

mixture is said to be completely random. The 

NRTL equation provides good representation of 

the binary vapor-liquid equilibrium and it readily 

can be generalized for multicomponent mixtures, 

with only the binary parameters. This equation is 

superior to the Wilson's equation in the sense that 

it can represent the liquid-liquid equilibrium 

(LLE). In addition, it is simpler in form than the 

UNIQUAC equation. The main disadvantage with 

the NRTL equation is that it has three adjustable 

parameters for each pair of components. From 

both practical and theoretical standpoints, it is 

desirable to minimize the number of parameters 
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needed to describe as wide variety of systems as 

possible. 

     In the original derivation of the NRTL 

equation, relationships were drawn between the 

nonrandomness factor  and Guggenheim’s 

quasichemical approximation it was shown that  

was related to the inverse of the coordination 

number 1/z that appeared in Guggenheim’s 

expression (which can be conceptually considered 

as 2/z). Renon made an effort to explicitly 

mention that the nonrandomness parameter was 

entirely empirical; however it appears that he was 

clearly guided by the idea that the two quantities 

were related [10]. 

     Since the coordination number is typically 

found to be within the range of 6-12 [10, 12, 15], 

the  parameter was expected to be on the order 

0.1 – 0.3 (later revised to 0.2 – 0.47 based on 

experimental fittings). Even went so as far as to 

suggest values based on the chemical nature of the 

mixtures being considered [11] clearly influenced 

by the idea that  was a property of the mixture, 

but subsequent studies in the field have eliminated 

any physical significance originally attributed to 

the parameter [16-18]. 

     Renon tried to address this issue by attempting 

to predict the nonrandomness based on the types 

of mixtures being evaluated [5, 9, 11], however as 

mentioned, subsequent studies have eliminated 

any physical significance originally attributed to 

the parameter (e.g. Tassios [18], even showed that 

= −1 works in many cases). In practice the 

nonrandomness factor  is unceremoniously set 

to 0.3 (typically results in stable predictions with 

the NRTL equation), and is typically only treated 

as an adjustable parameter when warranted (i.e. to 

fit LLE, or in order to stabilize the prediction) it is 

entirely considered an empirical factor.  

     Walas [3] and Demirel and Paksoy [19] 

suggest that the non-randomness parameter should 

be forced to vary between 0.1–0.9. In fitting the 

parameter matrix for the standard groups, it seems 

prudent to fix the nonrandomness parameter; 

given that typical values of vary from 0.2 – 

0.47, a fixed value of 0.3 will be used. If the use 

of a fixed value =0.3 leads to erroneous results, 

the parameter will need to be included in the 

regression of the standard groups. This should 

support the regression of group parameters that 

will be generally applicable, a requirement 

dictated by industrial use of such methods. 
 

Results and Discussion 
 

Proposed Expression For  

Nonrandomness Parameter ij 

     The aim of this work is to find an adequate 

expression for ij in terms of Gij and Gji in order 

to reduce the NRTL equation to a true two-

parameter model for systems that are completely 

miscible in the liquid phase. 

     Considering the inherent requirements of the 

ij parameter and the observed variation of this 

one with Gij and Gji. we have developed several 

empirical expressions which lead to values of ij, 

in terms of Gij and Gji, ranging from 0 to 0.47. 

The selected expressions were tested by 

correlation of experimental LLE data, and it was 

found that the following simple equation exhibits 

very good behavior: 
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     Substitution of ij from eq 13 into 11 and 

substitution eq 10 and eq 11 into eq 12 gives the 

equation referred to here as the proposed 

expression form of the NRTL equation. In order 

to verify the performance of the proposed 

expression form, an extensive study was carried 

out by comparing its behavior in LLE data 

correlations and predictions with the other two 

forms of the NRTL equation: (1) three adjustable 

parameters and (2) ij parameter set according to 

Renon's rules [11]. 

     In the first place, for this study, 222 reliable 

VLE data sets on completely miscible binary 

systems, at low or moderate pressures, were fitted 

with the three forecited equations. The systems 

components include hydrocarbons (paraffinic, 

naphthenic, and aromatic), ethers, esters, ketones, 

alcohols, phenol, m-cresol, water, and halogen-, 

nitrogen-, and sulfur-containing compounds. A 

fitting procedure, based on an algorithm 

developed by Powell [20], was established to 

minimize the following equation for the standard 

deviation, which has been used as the objective 

function. 
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     In this fitting procedure, a correction for 

vapor-phase nonideality was incorporated, and 

the activity coefficients were obtained from both 

isothermal and isobaric x, y, T, P data for 

completely miscible binary systems. The vapor-

phase fugacity coefficients were calculated with 

the Peng and Robinson [21] equation of state and 

the method of Hayden and O'Connell [22] for 

computing the second coefficient of the Virial 
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equation. Similar results were obtained from both 

equations of state, with the exception of the 

systems n-pentane + acetone at 149.5, 124.6, and 

99.6 °C. For these systems, the values obtained 

by the method of Hayden and O'Connell were 

used. 

     The results are summarized in Table 1, where 

the correlated binary systems have been classified 

into five groups according to the average infinite 

dilution activity coefficients: 
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  The results lead to the following conclusions: 

(1) All forms of the NRTL equation perform well, 

and as one might expect, the best results are 

obtained from the three-parameter form since this 

equation uses three adjustable parameters to 

minimize the objective function. 

 

 

 
Table (1): Standard Deviations in Fitting Liquid-Phase Activity Coefficients of Binary Systems 

 
no. of data 

sets 

no. of data 

points 

std dev 

3- parameter 
Renon's 

rules 

Proposed 

expression 

<0.5 14 156 0.054 0.065 0.055 

0.5-1.5 62 1095 0.028 0.028 0.028 

1.5-5.0 82 1442 0.032 0.034 0.033 

5.0-15 47 728 0.031 0.039 0.034 

>15 17 303 0.040 0.062 0.042 

total 222 3724    

av. of all data sets   0.033 0.037 0.034 
 

 

 

(2) For systems with relatively high positive 

deviations and both positive and negative 

moderate deviations from ideality (0.5 < 


av
 < 

15), the Renon rules and the proposed expression 

forms of the NRTL equation perform well and the 

proposed expression form shows somewhat better 

performance than the Renon rules form. 

(3) For systems showing both very strong positive 

(


av
 > 15) and very strong negative (



av
 < 0.5) 

deviations from ideality, the proposed expression 

form shows better performance than the Renon 

rules form. 
 

Estimation of Parameters 
     A new strategy was explored to estimate the 

parameter, allowing the experimental solubility 

data to be fitted to the Non Random Two Liquid 

(NRTL) activity coefficient model to obtain 

model energetic interaction parameters. The 

interaction parameters were successfully used to 

estimate solubility of the model compounds in 

mixed solvents over a temperature range. 

     The suitability of this modification is evaluated 

by following procedure in order to correlate or to 

predict the LLE of several binary systems taken 

from the literature ranged according to their non-

ideality degree. 

The estimation of the parameters in the NRTL 

equation was performed by minimizing the 

objective function (eq. 14). 

     The objective function was minimized with a 

hybrid algorithm consisting of the simulated 

annealing optimization algorithm [23] and either 

the Simplex [24] Levenberg-Marquardt algorithm 

[25–26] or Powell’s dog-leg method [20]. The 

simulated annealing method, with enough time 

should ultimately find the global optimal solution; 

however due to practical CPU time limitations, a 

rough (essentially the global minimum) global 

minimum will most likely be obtained from the 

algorithm. 

     In order to optimize the computational effort, 

the parameters, determined at the rough global 

optimum can be further refined to obtain the 

global optimum with the use of standard non-

linear optimization technique. This technique, 

however, will work sufficiently well only if the 

simulated annealing algorithm has determined a 

good starting point, i.e. sufficiently close to the 

global optimum (as required by all non-stochastic 

optimization algorithms, [27]). This hybrid 

approach has also been used and recommended by 
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 [28–29] several authors. The ‘optimal’ 

parameters determined from the simulated 

annealing algorithm were used as the starting 

point in the local optimization algorithm. 

Throughout the parameter optimization, the 

values that dictated the performance of the 

simulated annealing algorithm (number of 

iterations, cooling schedule, etc.) were those 

recommended by Goffee [23]. 
 

Temperature Influence on Ij 
 

     An advantage of assuming the additional 

temperature dependence on  parameter was the 

improved ability of the model to correlate and 

predict the non-ideal mixtures. 

Results from the correlation of binary systems 

indicated that the NRTL model performed better 

with the inclusion of the non-linear temperature 

dependence in the interaction parameters. 

It is considered to be an important advantage in 

the design of isobaric distillation equipment 

where the temperature varies from plate to plate 

[30].  

     To illustrate the influence of temperature on 

ij, such as was suggested in the introduction of 

this work, in Table 2 the results of the fittings of 

six sets of experimental isothermal VLE data, 

corresponding to the n-pentane + acetone system 

at temperatures ranging from -35 °C to 149.5 °C, 

are presented [31]. 

 
 

Table (2): Fit of Experimental VLE Data for the n-Pentane (1) + Acetone (2) System from -35 to 

149.5 °C. 

T, oC 


av
 

Renon's rules Proposed expression 

12 Std dev 12 Std dev 

-35.0 16.4 0.20 0.046 0.468 0.012 

-15.0 10.2 0.20 0.036 0.447 0.017 

25.0 6.7 0.20 0.031 0.423 0.015 

99.6 3.7 0.20 0.029 0.387 0.025 

124.6 2.4 0.20 0.021 0.379 0.020 

149.5 2.2 0.20 0.016 0.376 0.014 

av   0.030  0.017 
 

 

     As shown in Table 2, ij has almost no 

influence on the standard deviation in the case of 

high temperatures, from 99.6 °C to 149.5 °C, and 

both the Renon rules and the proposed expression 

forms of the NRTL equation lead to similar 

results. However, at low temperatures, from -35 

°C to 25 °C, the influence of ij is very important, 

and the standard deviation for the Renon rules 

form (with respect to the proposed expression 

form) greatly increases as the temperature 

reduces. These results suggest that the ij 

parameter should be set according not only to the 

chemical nature of mixture components but also 

to the temperature. Therefore, assuming that a 

linear reciprocal absolute temperature dependence 

for the logarithm of ij exists, the values of ij for 

proposed expression form of the NRTL equation 

shown in Table 2 were correlated with 

temperature to obtain the following expression: 
 

ln ij = - 1.2546 + 119.113/T                 ….(16) 
 

     Which provides a very accurate representation 

of the nonrandomness parameter in terms of the 

absolute temperature, with an overall average 

deviation in ij of only 0.098 %? 

 

Infinite - Dilution Activity Coefficients 
 

     Activity coefficient data is necessary for the 

understanding and design of many unit operations 

in chemical engineering (crystallization, 

distillation, liquid-liquid extraction etc.). Usually 

(but not always) the maximum value of the 

activity coefficient occurs at the infinite dilution 

value, which is the limit of the activity coefficient 

as the concentration of the solute tends towards 

zero. The infinite dilution activity coefficient is 

therefore a convenient way to gauge the suitability 

of a solvent for, as an example, liquid-liquid 

extraction. 

     Infinite-dilution activity coefficients play an 

important role in the analysis of separation 

processes, and the many advantages of ∞ in 

characterizing miscible solution behavior are well 

documented [18]. On the other hand, in recent 

years a number of new techniques, primarily 

chromatographic, have been developed for the 

relatively easy and rapid determination of activity 

coefficients in the limit of infinite dilution, and 
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considerable amount of information on limiting 

activity coefficients is available in the literature 

[32-33]. 

The proposed expression form of the NRTL 

equation is a true two-parameter model, and 

consequently, the parameters can be calculated 

from a single experimental data or from a pair of 

infinite-dilution activity coefficients. 
 

  12exp1221ln 1 


        ….(17) 

 

  21exp2112ln 2 


                  …(18) 

 

     To ensure the results had physical significance, 

the obtained parameters were used to predict the 

infinite activity coefficients. Properties at infinite 

dilution are of interest as they usually indicate the 

maximum non-ideality of the system. Therefore, a 

further test of the proposed expression form was 

carried out, studying its ability to predict binary 

LLE from infinite-dilution activity coefficients. 

     In Table 3, the average absolute error in the 

vapor mole fraction, calculated using parameters 

obtained from infinite-dilution activity 

coefficients, is shown for the Renon's rules and 

proposed expression forms of the NRTL equation. 

The 12 parameter set according to Renon's rules 

for each system is also shown in Table 3. The 

experimental values of 


1
 and 



2
 were obtained 

by graphic extrapolation to infinite dilution in 

both dilute regions for each binary pair [34-41]. 

     As shown in Table 3, both forms of the NRTL 

equation exhibit generally a very good 

performance and the proposed expression form 

predicts substantially better than the Renon rules 

form. 
 

Prediction of Ternary Vapor-Liquid 

Equilibrium from Binary Data 

     A study covering 13 ternary miscible systems 

[42-46] was carried out in order to compare the 

performance of the three-parameter, Renon's 

rules, and proposed expression forms of the 

NRTL equation in predicting multicomponent 

VLE from binary data. Equation 12 was employed 

for each form of the NRTL equation, with binary 

parameters obtained from fitting the binary 

system and the corresponding activity coefficients 

and vapor mole fractions were calculated for each 

ternary system. 

     The results are presented in Table 4 and 

indicate that good prediction of ternary VLE can 

be achieved with all three forms of the NRTL 

equation. ln opposition to what would be 

expected, both the proposed expression and 

Renon's rules forms give slightly better results 

than the original three-parameter NRTL 

equation. This conclusion agrees with that 

previously obtained by Tassios [18], who studied 

the accuracy of the three-parameter and Renon 

rules forms of the NRTL equation in predicting 

the activity coefficients for ternary systems from 

binary data only. It is interesting to remark that 

the proposed expression form provides very 

good prediction of ternary VLE data from 

binary, at least as good as the NRTL equation 

with the value of ij set according to the rules of 

Renon and Prausnitz [11]. 
 

Conclusions 
 

The no randomness parameter  is largely an 

empirical parameter and may not follow the rules 

set out by Renon. 

Tassios [18] states that the NRTL equation should 

be considered an empirical model and the best 

results are obtained when the non-randomness is 

obtained from regression of the available 

experimental data. This was also suggested by van 

Bochove [47], who pointed out that values from 

0.01 to 100 can be found from correlations of 

experimental data. 

     An optimization algorithm, based on the 

simulated annealing algorithm, has been 

developed to optimize the binary interaction 

parameters in the NRTL model from activity 

coefficient, LLE data. The model was quite 

successful in correlating the activity coefficient, 

LLE data of the systems investigated. The 

difference in the goodness of fit between the 

systems can be explained by the quality of data 

found for each system. 

     In this work, we have proposed the simple 

expression in order to reduce the number of 

adjustable parameters from three to two in the 

original NRTL equation. The resulting equation, 

referred to in this paper as the proposed 

expression form of the NRTL equation, is a true 

two-parameter model which eliminates the 

ambiguity encountered sometimes in choosing the 

proper value of the nonrandomness parameter ij 

according to the rules recommended by Renon 

and Prausnitz for completely miscible systems. 

The performance of both the proposed expression 

and Renon's rules forms of the NRTL equation is 

compared in correlating LLE data of binary 

systems and in predicting binary systems from 

infinite-dilution activity coefficients and ternary 

systems from binary data only. 

     The proposed expression form of the NRTL 

equation exhibits a very good behavior for both 

correlation and prediction of LLE data of 

completely miscible systems. It appears to give 

better results than the Renon's rules form for 

correlation of LLE data of binary systems and 

prediction of ternary systems from binary data 

only, and it gives better results than the Renon's 

rules form in predicting binary systems from 

infinite-dilution activity coefficients. 
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Table (3): Prediction of Experimental Data from Two Infinite-Dilution Activity Coefficients 

  exp. 


av. abs error in vapor mole 
fraction 

no. system 1-2 T, oC 1
∞ 2

∞ 12 
Renon's 

rules 
Proposed 

expression 

1 water-hydrazine 58-75 0.17 0.03 0.30 0.008 0.006 

2 quinoline-m-cresol 180.3 0.10 0.18 0.30 0.012 0.010 

3 quinoline-m-cresol 160.4 0.15 0.19 0.30 0.007 0.006 

4 quinoline-m-cresol 200.3 0.12 0.30 0.30 0.010 0.008 

5 diethyl ether-halothane 30.0 0.23 0.21 0.30 0.005 0.004 

6 diethyl ether-halothane 33-51 0.31 0.26 0.30 0.002 0.002 

7 benzothiazole-m-cresol 160.3 0.36 0.43 0.30 0.010 0.008 

8 chloroform-ethyl acetate 63-78 0.54 0.36 0.30 0.003 0.002 

9 acetone-chloroform 45.0 0.44 0.47 0.30 0.008 0.006 

10 acetone-acetonitrile 45.0 1.05 1.04 0.30 0.008 0.006 

11 n-octane-2-methylpentane 40.0 1.18 1.04 0.30 0.006 0.005 

12 methylcyclopentane-benzene 71-80 1.47 1.34 0.30 0.002 0.002 

13 acetone-benzene 45.0 1.65 1.52 0.30 0.005 0.004 

14 acetone-carbon tetrachloride 45.0 3.00 2.15 0.30 0.009 0.007 

15 n-pentane-acetone 149.5 2.82 2.50 0.20 0.030 0.023 

16 benzene-acetonitrile 70.0 2.70 2.65 0.30 0.007 0.006 

17 benzene-acetonitrile 73-82 2.55 3.15 0.30 0.008 0.006 

18 n-pentane-acetone 124.6 3.15 2.98 0.20 0.027 0.021 

19 n-pentane-acetone 99.6 3.57 3.64 0.20 0.027 0.020 

20 diethylamine-acetonitrile 24.8 3.65 4.10 0.30 0.008 0.006 

21 n-pentane-acetone 25.0 6.56 8.04 0.20 0.028 0.014 

22 acetone-cyclohexane 25.0 8.50 6.50 0.20 0.016 0.004 

23 ethanol-benzene 45.0 10.60 4.45 0.47 0.005 0.005 

24 butanol-carbon disulfide 30.0 13.00 2.60 0.47 0.003 0.003 

25 acetonitrile-triethylamine 70-87 9.00 9.00 0.47 0.010 0.009 

26 nitromethane-carbon tetrachloride 45.0 10.60 7.45 0.47 0.007 0.004 

27 carbon tetrachloride-acetonitrile 65-80 5.00 15.00 0.47 0.020 0.016 

28 n-pentane-acetone -15.0 11.48 12.36 0.20 0.038 0.010 

29 ethanol-methylcyclopentane 60-77 20.00 5.75 0.47 0.012 0.009 

30 ethanol-n-hexane 58-68 18.10 9.05 0.47 0.009 0.008 

31 n-pentane-acetone -35.0 14.13 15.21 0.20 0.035 0.002 

32 ethanol-n-heptane 30.0 20.00 14.00 0.47 0.012 0.010 

33 ethanol-n-heptane 30.1 23.00 12.50 0.47 0.005 0.004 

34 ethanol-isooctane 50 0 27.50 10.80 0.47 0.014 0.012 

35 ethanol-carbon disulfide 30.0 53.00 6.50 0.47 0.010 0.008 

 av     0.012 0.008 
 

 

Table (4) Prediction of Ternary Systems from Binary VLE Data 
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Nomenclature 
 

 

Abréviations 
 

LLE Liquid – Liquid Equilibrium 

NRTL 
Non-Random Two Liquid activity 

coefficient model 

stu dev Standard deviation 

UNIQUAC 
Universal Quasi-Chemical Activity 

Coefficient model 

VLE Vapor – Liquid Equilibrium 
 

Symbols 

Gij Adjustable parameters in the NRTL model 

GE Excess Gibbs energy 

gij 
Energy of interaction between the i and j 

component (J mol-1) 

N Number of component in the system 

P Total Pressure 

R Gas Constant 

T Temperature 

xi Mole fraction of component i 

z Coordination number 
 

Greek Letters 
 

ij 
Non-randomness parameter for binary i-j 

interactions of the NRTL model 

 Activity coefficient 

∞
 Infinite dilution activity coefficient 

 
Average infinite dilution activity 

coefficient 

ij 
Inherent binary parameter between the i 

and j component 
 

Subscripts 
 

E Excess energy 

∞ Infinite dilution 
 

Superscripts 
 

av Average value 

caled Calculated value 

exptl Experimental value 

i component i 

j component j 

ij 
interaction between the i and j 

component 
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 سائل –المطورة للتنبؤ بأتزان سائل  NRTLمعادلة 
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 :الخلاصة
سائل الموجود في الأدبيات للحصول على علاقة جديدة  –الدراسة الحالية تتعامل مع تمثيل بيانات أتزان سائل 

 .NRTLمناسب للأستخدام في نموذج معامل الفعالية  للمتغير اللاعشوائي 
ه لجعل الأصلي ذات الثلاثة متغيرات NRTLطة تم اقتراحها لتطوير نموذج معامل الفعالية علاقة جديدة مبس

الأصلي ذات  NRTLنموذج ذات متغيرين. الأداء للعلاقة المقترحة تمت مقارنتها مع نموذج معامل الفعالية 
لتنبؤ بالأنظمة الثنائية من سائل للأنظمة الثنائية وكذلك ل –الثلاثة متغيرات من خلال تمثيل بيانات أتزان سائل 

 خلال معامل الفعالية عند التخفيف اللأنهائي والتنبؤ بالأنظمة الثلاثية من البيانات للأنظمة الثنائية.
 

 
 

لضمان ان النتائج صحيحة وذات معنى فيزياوي، المتغيرات التي تم الحصول عليها استخدمت للتنبؤ بمعامل 
الفعالية عند التخفيف اللانهائي. ان الخواص عند التخفيف اللانهائي مهمة جداً حيث انها تشير الى الدرجة العالية 

 من اللامثالية للأنظمة.

سائل وكذلك معامل الفعالية عند درجة الحرارة الواطئة.  –لحساب أتزان سائل  الموديل الرياضي تم تطبيقه بنجاح
تم جمع قاعدة بيانات واسعة للتحقق من صحة العلاقة والتي تغطي مدى كبير من التركيز ودرجة الحرارة و 

 الضغط. وجد بأن النموذج المقترح للمتغير اللاعشوائي يعطي احسن النتائج.
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