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Abstract  
       In many classes of problems of elastic 

systems such as gyroscopic and circulatory 

systems stability investigations are being 

conducted .The concept of a "stability boundary" 

arising in connection with multiple loading 

parameters is used for stability investigation. The 

concept is extended to analyze stability of 

conservative pipes conveying fluid since they are 

regarded as gyroscopic systems. 

In this approach the pipe system is discretized to a 

two –degree of freedom by using Galarkin 

projection. The solution of the Eigen-value 

problem leads to the characteristic equation 

describing   the parameters -frequency 

relationship .By plotting the root locus of these 

characteristic equation the main stability features 

such as stability, buckling and flutter instability 

and destabilization has been investigated   

graphically .The validity of this approach was 

tested by comparing it with the other published 

methods The results gave good agreements. 

      The effect of the fluid parameters such as 

fluid velocity, fluid pressure and pipe-fluid mass 

ratio on the pipe stability are also investigated. 

The results showed that the mass ratio has a major 

effect on stability behaviors since the sequence of 

stability can be dramatically changed whereas ,the 

fluid pressure showed slight effect since the 

stability sequence is not altered , for wide range 

of the fluid velocities . 
 

Keywords: stability boundary, buckling, flutter, 

conservative, gyroscopic, 
 

1 .Introduction  
        Pipes conveying fluid are classified as 

gyroscopic systems according to the gyroscopic 

effect arises from the relative rotation motion of 

the fluid element as it vibrate laterally to conform 

with the pipe motion .Moreover pipes are 

regarded as conservative when the total energy 

supplied by the fluid to the whole pipe system are 

nearly zero .Pinned-pinned, clamped-pinned and 

clamped-clamped pipes belong to this category 

     In general, fluid-conveyed pipe systems 

behave as stable at relatively low fluid velocities 

(pre-critical). At certain critical velocities pipes  

can lose their stability either by static 

convergence (buckling) or by exponent growth 

oscillation (flutter).At further higher velocities 

(post-critical) pipes behave in different manners, 

it may still unstable at the same mode (buckling 

or flutter),regain its stability or change its mode 

of instability.    

   Evaluation of the stability regions at various 

pipe parameters is of a major interest in design of 

such systems in order to insure that the safe 

operations for specific pipe and fluid parameters 

are desirable. 

   Early,   many researcher had been  studied  the 

stability for conservative pipes conveying fluid 

like Bishop [1], Weaver and Unny [2]and recently, 

Kuiper and Metrlkine [3] and Si-Ung and his 

coworkers [4] .Their investigations were focused 

on evaluating of the  critical fluid velocities for 

buckling instability and stability characteristics  

for pinned-pinned, clamped–pinned and clamped-

clamped pipes conveying fluid . However, these 

studies were based on the complete solution of the 

equation of motion by using either approximated 

analytical or numerical solutions. These solutions 

are normally required calculations. 

    The concept of "stability boundary" arises in 

connection with multiple loading parameters has 

considerable applications in many elastic systems 

such as gyroscopic (e.g.: rotating flexible shaft) 

and circulatory systems (e.g.: column subjected to 

partial follower load).For detailed analysis and 

applications the interested reader refers to a book 

by Huseyni [5].   

  Sundraraian [6] and Huseyni [5], investigated 

buckling stability for gyroscopic conservative 

beams subjected to follower loads .They 

introduced many useful theorems concerning the 

effect of the variation of the gyroscopic forces on 

stability and the buckling instability regions. 

Later, Huseyni and Plaut [7] and Huseyni [8] 

extended the analysis of stability to include the 

flutter instability for non-conservative systems 

such as cantilever with combined concentrated 

and distributed follower loads .They showed that 

flutter instabilities can take place in such systems 

as well as the buckling instabilities.  

   Recently Li-Qun [9] studied the buckling 

instability for axially moving beams with pinned 

or clamped ends .The conserved quantity was 
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applied to demonstrate the Lyapunov stability of 

the straight equilibrium configuration in 

transverse nonlinear of beam with a low axial 

speed. Elfelsou [10] investigated buckling and 

flutter instability for conservative and non- 

conservative beams .For conservative beams 

buckling loads, natural frequencies and associated 

Eigen-modes were computed. For non-

conservative beams the flutter load and instability 

regions with respect to the elastic concentrated 

and distributed foundations were identified .The 

Eigen-modes and non-linear vibrations of beams 

were investigated based on one mode analysis. 

     The analogy between the dynamics of pipes 

conveying fluid  and the other dynamical 

problems such as  column under follower loads 

,beams with moving loads and moving strings and 

belts  was demonstrated  by many researchers 

such as Plaut[11]who showed that the dynamical 

behaviors of fluid-pipe systems are identical with 

the beams of follower loads where the fluid forces 

and follower loads act dynamically in the same 

manners   .Recently , Paidousiss [12] generalized 

the idea of the analogy between pipe systems and 

other dynamical systems and the possibility of 

exchanging the gained knowledge between each 

other  . 

   Due to this evident analogy, therefore, it is 

possible to extend the concept of a "stability 

boundary" to include the conservative pipes 

conveying fluid such as pinned-pinned, (p-p), 

clamped-pinned (c-p) and clamped –clamped (c-

c) pipes.  To accomplish this analysis the equation 

of motion is discretized to two-degree of freedom 

in the vicinity of the equilibrium configuration by 

using Galarkin method. The equation of the 

characteristics curves for this reduced system can 

readily be derived in terms of the pipe parameters   

. The various boundaries of stable and unstable 

regions can simply be investigated against the 

variation of the fluid velocity, mass ratio and 

pressure as loading parameters. 
 

2. Theoretical Consideration  
    The fluid conveying pipe under consideration is 

assumed to obey Euler–Bernoulli Beam theory. 

The structure of the pipe has a small deformation, 

the conveyed fluid is assumed as non-viscous and 

incompressible and the effect of gravity and 

internal damping are neglected.   

     Consider a uniform tubular beam shown in 

fig.(1) of length L,  mass per unit length mp, and 

flexural rigidity EI, conveying fluid of mass per 

unit length mf ,flowing axially with velocity V, 

the fluid cross sectional area is Af, and the fluid 

pressure measured above the atmospheric is P.  

 

 

 

 

 
Figure (1): Pipe model 

 

Fr small displacement the x-component of the 

fluid velocity can be assumed to be V. And the y- 

component is [13]; 
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The strain energy is [1]; 
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Using Hamilton's principle, one get [1]; 
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Performing the variation and integrating by parts 

results the following equation of motion is 

obtained; 
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Eq. (4) can be written in the following 

dimensionless form; 
 

ηIV+ (U2+γ) η" +2Uβη' +  ۬  ۬ Ω2 =0              …... (5) 
 

Where;  

ζ = x/L,η = y/L,U = EImVL f /. , 

γ = EILPAp /2
, 

β =mf/(mf+mp)   and      
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 τ = )/()./( 2

pf mmEILt 
                  .… 

(6) 

 

 2.1 Characteristic Equation  
 

   Galarkin method is employed to discrete Eq. 

(6).For this purpose the following series is 

selected [8]   ; 

η(ζ,τ)= )()(
1
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              ... (7) 

 

Where, Φn (ζ) are the shape functions and un (τ) 

are time functions. 

     In case of beam –like pipes the normal modes 

of beams can be used as shape functions as a good 

approximation for the pipes vibrations as well as 

they automatically satisfy all the boundary 

conditions. 

  By substituting eq.(7) into eq.(5) the following 

relation is obtained; 
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In which Φn(ζ) and un(τ) are replaced by Φn and 

un for simplicity. Then multiplying eq. (8) by the 

boundary residual value function Φk and 

integrating  along the whole span of the pipe and  

setting  the final result to zero, to get; 

}{
1

)
2

2)
2

(
1

(

1

0
















 k

knnUinU
n

IV

n 

=0                                                             ..... (9) 
 

  It was demonstrated  that the analysis of  

stability of gyroscopic systems can satisfactory be 

made by using two mode Galarkin analysis [5] .For 

non-conservative pipes such as cantilever the 

accurate analysis require more than five modes 
[13].Hence, the present  analysis is restricted for 

conservative pipes only. 

   Using two mode beam analysis (n =2, k =2) the 

following matrix equation is resulted; 

 

([C] +R [A] +2i β UΩ [B] - Ω2 [I]) {u} =0 .… (10) 
 

Where; 

R=U2+γ,                                                                         

[I]: is identity matrix and; 
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and Φ1 and Φ2 are the first and second beam mode 

functions for specific boundary conditions.  

   In the following the three types of conservative 

pipes conveying fluid will be investigated:- 
 

I.pinned –pinned pipe  
    In this case the mode functions and the Eigen-

values are [14]; 
 

Φn(ζ)=sin ηn ζ, η 1,2  n= nπ ,       n=1,2        ….(12)  

 

Substitute eq.(12) into eq.(11) and performing the 

integrations and making use of the orthogonally 

concept, the matrices [A], [B] and [C] can be 

evaluated.  

For nontrivial solution one must have; 
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Where; 

R= 2U  
 

Expansion the determinant in eq.(13) leads to the 

following characteristic equation; 
 

Ω4-(28.443 β2U2-49.348R+ 1656.0) Ω2+ 389.63R2 

- 19228.0R + 151822.0=0                         …. (14) 
 

II.clamped-pinned pipes 
 

The mode functions and the Eigen-values are [14]; 

Φn(ζ)=cos ηnζ-coshηnζ- 

nn

nn





sinhsin

coshcos





(sinηnζ-sinhηnζ),  η 1,2 =3.927,7.069,n=1,2   …(15) 
 

Substituting eq.(15) into eq.(11) and proceeding 

as in the above will yield the following 

characteristic equation; 

 

Ω4+(54.415R-35.903β2U2-2734.5) Ω2-

(0.0374RβU+1.4091 βU) iΩ +475.55R2-

38951.0R+593844.0=0                          …… (16) 
 

III. clamped-clamped pipes. 
 

The mode functions and the Eigen-values are [14]:- 
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Φn(ζ)=cosηnζ-coshηnζ-

nn

nn





sinhsin

coshcos




 

(sinηnζ-sinhηnζ) ,    η 1,2  =4.73,7.853  ,n=1,…..(17)  

     

Substituting eq.(17) into eq.(11) and proceeding 

as for the case of pinned-pinned pipe will result in 

the following characteristic equation:- 

 

Ω4-i0.014489Ω3βU+(58.291R-  44.762β2U2-

4303.1)Ω2-(0.10977RβU-5.6809 β U)i Ω 

+ 565.83R2- 69807R+  1.9034x10^6=0    …. (18)   
 

3. Results and Discussions. 
    For the purpose of illustration, a typical plot of 

the stability boundary for clamped-pinned pipe 

conveying fluid at γ=0 and β=0.9 is constructed in 

fig.(2).To construct such a figure the roots of 

eq.(16) are evaluated for various values of the 

dimensionless velocity U. It should be mentioned  

that the fourth order polynomial equation like  

eq.(16) gives  four roots for  Ω .However in this 

case(and for others ,also) each  two of these four 

roots are equal in magnitude but with opposite 

signs .If these roots are squared then only  two 

values of  them are different . Finally the square 

values of the roots and U are plotted to get the 

root locus as shown in fig.(2). 

  To inspect the stability behavior the following 

rules are followed [7]:- 

1. When all the roots lie in the first quarter 

(or to the right of the line Ω2=0) in      

Ω2-U2 plane the pipe is stable. 

2. If at least one of the two roots lies in the 

second quarter the pipe is unstable.  

3. Buckling instability initiates   at the 

points of intersection of the root locus 

with the line Ω2=0 

4. Flutter instability initiates at the 

maximum point of the root locus. 

    Now, referring to fig.(2) the following 

sequence of the stability behaviors can be 

observed:- 

 At U2 Є[0,20],the pipe is stable since all 

values of Ω2 lie to the right of the line 

Ω2=0. 

 At U2 Є[20, 62], the pipe is under 

buckling instability since some values 

of Ω2 lie to the left. 

 At U2 Є[62, 71], the pipe regains its 

stability as in the first case. 

 For U2 >71 the pipe is at flutter 

instability.  

 Points A and B are the critical points of 

buckling instability since they lie on the 

line Ω2=0  - 

 Point C is the critical point of flutter 

instability which is the maximum point 

in the plot. 

 

 

Figure (2): Stability boundary for c-p  pipe 

at γ=0,β=0.5 
 

 

Figure (3): Stability boundary of p-p pipe at 

γ=0. 
 

 

Figure.(4): Stability analysis of  p-p pipe , 

Ref[11]  
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Figure (5): Stability boundary of c-p   pipe at 

γ=0 

Figure (6): Stability analysis of c-p [11] 
 

Figure (7): Stability boundary of c-c   pipe at 

γ=0 

 

 

 

 

 

 

 

 

Figure (8): Stability analysis of c-c pipe 11] 

 

 
Figure (9): Stability boundary of p-p pipe at 

β=0.5, 

 
Figure (10): Stability boundary of c-p pipe at 

β=0.5. 
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Figure (11): Stability boundary of c-c pipe at 

β=0.5. 

 
To check the validity of the present approach the 

results of stability of  p-p, c-p and c-c pipes 

according to  the present approach are plotted in 

figs.(3,5 and 7) while those according to Ref.(11) 

are shown figs.(4,6 and 8)  .As it can be seen from 

these figures that the critical velocities of 

buckling are coincided (taking into account that 

they are squared in the present approach) .Also, 

the natural frequencies of the first and the second 

modes are nearly the same .  

   For further checking, many points in figs. (3,5 

and 7)  are compared with the other available 

results in the literature .For example at U2=0 these 

figures gives the square of the first and second 

natural frequencies of corresponding beams 

which are  79 and 41 for pinned-pinned , 1559 

and 237  for clamped-pinned and 2497and 500.6 

for clamped-clamped pipes as seen in Meirovitch 
[14]. This is true since the pipe is reduced to a 

beam as the fluid velocity becomes zero 

according to eq.(6). Also, in figs.(3-5) the lowest 

points of intersections of the plots with the line 

Ω2=0 for any β are 9.61, 20.25 and 40.7, 

respectively. These are nearly the square of 

π,4.5and  2 π ,respectively which are the critical 

velocities for first mode buckling of the 

mentioned  pipes as they are given in refs [2] and 
[3]. 
 

The fundamental natural frequencies Ω1 at γ = 0 

can be calculated from the following 

approximated formulas taken from ref. [13]:-   
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for p-p, c-p and c-c pipes, respectively.  

Table (1) show such calculation and associated 

error between the present approach results and 

those of ref.[13] 

 

Table (1): Comparison Ω and U values between the present approach and those of ref.[13] 
Ω    of  c-c pipe Ω    of  c-p pipe Ω    of  p-p pipe 

U 
E% Ref.( 13 ) Present E% Ref.( 13 ) Present E% Ref.( 13 ) Present 

-0.55 22.3733 22.2580 -1.3 15.4182 15.215 -2.03 .969.9 9.6631 0 

-0.90 22.2645 22.0668 -0.7 15.2700 15.156 -1.86 .996.2 9.4889 0.6283 

-0.92 21.9347 21.689 -1.14 14.8167 14.625 -3.20 .9.0.9 8.7500 1.2566 

-1.12 21.3739 21.1258 -1.0 14.0285 13.8596 -2.92 696..6 7.6589 1.8850 

-1.45 20.5630 20.314 -1.56 12.8441 12.6256 -5.10 .9.216 5.5890 2.5133 

-2.63 19.4709 19.0589 -2.31 10.1377 9.895 0 . 0 *3.1416 

-2.77 18.0466 17.5258 -4.65 8.6042 8.255    3.7699 

-4.93 16.2026 15.458 0 . 0    *4.3982 

-6.43 9.7716 9.1548       5.0265 

-7.89 3.8432 3.50589       5.6549 

0 0 0       *6.2832 

    *: critical  

 
In figs.(3, 5 and 7), the stability boundaries at β = 

0.3, 0.5 and 0.9 are presented, also.   As it is clear 

from these figures the effect of varying β is  

significant on flutter instability since the 

maximum points on the plots are either shifted to 

the right as β increased or it may vanish as in 

fig.(4) for β =0.3. It should be noted that 

according to this effect the sequence of stability is 

dramatically altered. For example in fig.(3) at 

β=0.3 the sequence of stability is:- stable, 

buckling, and flutter while at β=0.9 it becomes:- 

stable, buckling, stable and flutter .This also true 

for the other figures .However β has no effect on 

buckling instability since the critical points for 

buckling (the intersection points with line Ω2=0) 

are not affected in all cases. 

    The  effect of the fluid pressure is presented in 

figs.(9),(10) and(11) where γ =0,2 and 3 are 

selected .It is clear from these figures that the 

effect of increasing γ is to slightly shifted  of the 
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stability boundary to lower values for all of the 

considered pipes .However the sequences of 

stability are not altered .  

Finally it is important to state that ;the  graphical 

results given in this study can be used to test the 

stability of any conservative pipe since they are 

given in dimensionless form .For example for a 

specific pipe (dimensions ,  material and 

boundary conditions )  containing  a specific fluid 

at given velocity and pressure , the dimensionless 

parameters U,β and γ can be calculated from 

eq.(6) and the stability can be tested using the 

corresponding figure . 
 

4. Conclusions 
   The concept of a "stability boundary" can be 

used as an alternative approach for investigating 

the sequence of stability for conservative pipes 

conveying fluid. This approach provide a simple 

and effective method for analyzing stability at a 

wide range of the fluid velocities. 

   The validity of present approach was examined 

by comparing the present results with the 

available data in the literature, and show good 

agreement. 

  The fluid-mass ratio has a significant effect on 

the flutter instability and hence the stability 

behaviors .However the effect of increasing the 

fluid pressure is to shift the boundaries to a 

slightly lower values without altering the 

sequence of the stability. 
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Notations and Nomenclature  

(') : 



 

(.) :



 

p-p:  Pinned-pinned pipe 

c-p: Clamped-pinned pipe 

c-c: Clamped-clamped pipe 

Af.,Ap : Fluid and pipe cross sectional area  

           , respectively. (m2) 

        E: Modulus of elasticity. (N/m2) 

         I: Area moment of inertia (m4) 

        L: Pipe length. (m) 

mf, mp: Fluid and pipe mass per unit length,    

               respectively. (kg/m) 

         P: Fluid pressure. (N/m2) 

       U: Dimensionless fluid velocity. 

        un: Generalized coordinates 

       Фn: Shape functions    

       V: Fluid velocity. (m/s) 

η, ζ: dimensionless coordinates  

U, β, γ: Dimensionless velocity, mass ratio, and  

          dimensionless pressure, respectively  

       Ω: Dimensionless frequency = ωL2[(mf + mp) 

/E I)1/2   

      ω :Circular frequency .(rad/sec) 

       τ: Dimensionless time. 

ρf ,ρp :Fluid and pipe material density, 

respectively (kg/m3 ) 
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وظةللأنابيب الناقلة للموائع ذات الطاقة المحف  ةأسلوب بديل لتحليل الاستقراري  
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 الخلاصة:

تواكب بحوث الاستقرار العديد من المنظومات المرنة كالمنظومات الجايروسكوبية و الدورية ويستخدم مفهوم" حد 

( .تم parametric loadsرار" في تحليل الاستقرارية لتلك المنظومات عندما تتعرض الى احمال بارامترية )الاستق

في هذا البحث , توسيع هذا المفهوم ليشمل تحليل الاستقرار للانابيب الناقلة للموائع ذات الطاقة المحفوظة باعتبارها 

الية , تم تجزئة منظومة الانبوب الى منظومة ذات درجتين في الطريقة الح.نوع من المنظومات الجايروسكوبية ايضا

من الحرية باستخدام طريقه "جالركين" وبعد  حل المصفوفة المميزة الناشئة من تطبيق الظروف الحدية تم الحصول 

على معادلة الخصائص التي تربط بين معاملات المنظومة وتردداتها الطبيعية  ومن خلال رسم مخططات المحال 

دسي لجذورهذه المعادلة تم تحديد المعالم الاساسية للاستقرار مثل الانبعاج والرفرفة واستعادة الاستقرار .كما وتم الهن

التاكد من صحه الطريقة من خلال مقارنة نتائجها مع نتائج منشوره اخرى , فبينت النتائج توافقا جيدا.كذلك تم البحث 

نسبة الكتلية على استقرار الانابيب  , فبينت النتائج التي اجريت على في تاثير خصائص المائع كالسرعه والضغط وال

مدى واسع من سرع المائع ان للنسبة الكتلية التاثير الاكبر على تصرفات الاستقرار لكون تتابع اطوار الاستقرار يمكن 

 ع .واضح جدا , بينما يكون تاثير الضغط بسيطا لكونه لا يؤثر على ذلك التتابكلان يتغير بش
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