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Abstract

In many classes of problems of elastic

systems such as gyroscopic and circulatory
systems stability investigations are being
conducted .The concept of a "stability boundary”
arising in connection with multiple loading
parameters is used for stability investigation. The
concept is extended to analyze stability of
conservative pipes conveying fluid since they are
regarded as gyroscopic systems.
In this approach the pipe system is discretized to a
two —degree of freedom by using Galarkin
projection. The solution of the Eigen-value
problem leads to the characteristic equation
describing the parameters -frequency
relationship .By plotting the root locus of these
characteristic equation the main stability features
such as stability, buckling and flutter instability
and destabilization has been investigated
graphically .The validity of this approach was
tested by comparing it with the other published
methods The results gave good agreements.

The effect of the fluid parameters such as
fluid velocity, fluid pressure and pipe-fluid mass
ratio on the pipe stability are also investigated.
The results showed that the mass ratio has a major
effect on stability behaviors since the sequence of
stability can be dramatically changed whereas ,the
fluid pressure showed slight effect since the
stability sequence is not altered , for wide range
of the fluid velocities .

Keywords: stability boundary, buckling, flutter,
conservative, gyroscopic,

1 .Introduction
Pipes conveying fluid are classified as
gyroscopic systems according to the gyroscopic
effect arises from the relative rotation motion of
the fluid element as it vibrate laterally to conform
with the pipe motion .Moreover pipes are
regarded as conservative when the total energy
supplied by the fluid to the whole pipe system are
nearly zero .Pinned-pinned, clamped-pinned and
clamped-clamped pipes belong to this category
In general, fluid-conveyed pipe systems
behave as stable at relatively low fluid velocities
(pre-critical). At certain critical velocities pipes
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can lose their stability either by static
convergence (buckling) or by exponent growth
oscillation (flutter).At further higher velocities
(post-critical) pipes behave in different manners,
it may still unstable at the same mode (buckling
or flutter),regain its stability or change its mode
of instability.

Evaluation of the stability regions at various
pipe parameters is of a major interest in design of
such systems in order to insure that the safe
operations for specific pipe and fluid parameters
are desirable.

Early, many researcher had been studied the
stability for conservative pipes conveying fluid
like Bishop M, Weaver and Unny @and recently,
Kuiper and Metrlkine B! and Si-Ung and his
coworkers M Their investigations were focused
on evaluating of the critical fluid velocities for
buckling instability and stability characteristics
for pinned-pinned, clamped—pinned and clamped-
clamped pipes conveying fluid . However, these
studies were based on the complete solution of the
equation of motion by using either approximated
analytical or numerical solutions. These solutions
are normally required calculations.

The concept of "stability boundary” arises in
connection with multiple loading parameters has
considerable applications in many elastic systems
such as gyroscopic (e.g.: rotating flexible shaft)
and circulatory systems (e.g.: column subjected to
partial follower load).For detailed analysis and
applications the interested reader refers to a book
by Huseyni B,

Sundraraian © and Huseyni [, investigated
buckling stability for gyroscopic conservative
beams subjected to follower loads .They
introduced many useful theorems concerning the
effect of the variation of the gyroscopic forces on
stability and the buckling instability regions.
Later, Huseyni and Plaut [ and Huseyni [l
extended the analysis of stability to include the
flutter instability for non-conservative systems
such as cantilever with combined concentrated
and distributed follower loads .They showed that
flutter instabilities can take place in such systems
as well as the buckling instabilities.

Recently Li-Qun [! studied the buckling
instability for axially moving beams with pinned
or clamped ends .The conserved quantity was
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applied to demonstrate the Lyapunov stability of
the straight equilibrium configuration in
transverse nonlinear of beam with a low axial
speed. Elfelsou 19 investigated buckling and
flutter instability for conservative and non-
conservative beams .For conservative beams
buckling loads, natural frequencies and associated
Eigen-modes were computed. For non-
conservative beams the flutter load and instability
regions with respect to the elastic concentrated
and distributed foundations were identified .The
Eigen-modes and non-linear vibrations of beams
were investigated based on one mode analysis.

The analogy between the dynamics of pipes
conveying fluid and the other dynamical
problems such as column under follower loads
,beams with moving loads and moving strings and
belts was demonstrated by many researchers
such as Plauttwho showed that the dynamical
behaviors of fluid-pipe systems are identical with
the beams of follower loads where the fluid forces
and follower loads act dynamically in the same
manners .Recently , Paidousiss [*?! generalized
the idea of the analogy between pipe systems and
other dynamical systems and the possibility of
exchanging the gained knowledge between each
other .

Due to this evident analogy, therefore, it is
possible to extend the concept of a “stability
boundary” to include the conservative pipes
conveying fluid such as pinned-pinned, (p-p),
clamped-pinned (c-p) and clamped —clamped (c-
c) pipes. To accomplish this analysis the equation
of motion is discretized to two-degree of freedom
in the vicinity of the equilibrium configuration by
using Galarkin method. The equation of the
characteristics curves for this reduced system can
readily be derived in terms of the pipe parameters
. The various boundaries of stable and unstable
regions can simply be investigated against the
variation of the fluid velocity, mass ratio and
pressure as loading parameters.

2. Theoretical Consideration

The fluid conveying pipe under consideration is
assumed to obey Euler—Bernoulli Beam theory.
The structure of the pipe has a small deformation,
the conveyed fluid is assumed as non-viscous and
incompressible and the effect of gravity and
internal damping are neglected.

Consider a uniform tubular beam shown in
fig.(1) of length L, mass per unit length m,, and
flexural rigidity EIl, conveying fluid of mass per
unit length m; ,flowing axially with velocity V,
the fluid cross sectional area is As, and the fluid
pressure measured above the atmospheric is P.

166

Yousif et al., pp.165-172

\ pined or clamped

Figure (1): Pipe model

Fr small displacement the x-component of the
fluid velocity can be assumed to be V. And the y-
component is 3l
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For a small pipe segment of length dx, the kinetic
energy is [4;
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Using Hamilton's principle, one get [1];
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Performing the variation and integrating by parts
results the following equation of motion is
obtained;

4 2 2
5 8 )
EI—X+(me2 +PAp)—2y+2me—y
oX X oxot
2
)
+(m +mp)—y:0 .. (4)
ot

Eg. (4) can be written in the following
dimensionless form;

v+ (Usy) " +2UBR +500Q%2=0 ... (5)
Where;

C=xLy=ylL,U=VL./m /El
y=PAL*/El,

S =m¢d(ms+m,) and
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t= (t/1%). JEL[(m; +m)

2.1 Characteristic Equation

(6)

Galarkin method is employed to discrete Eq.
(6).For this purpose the following series is
selected &1 ;

= D P (S, (2) . (7)

Where, @, () are the shape functions and u, (1)
are time functions.

In case of beam —like pipes the normal modes
of beams can be used as shape functions as a good
approximation for the pipes vibrations as well as
they automatically satisfy all the boundary
conditions.

By substituting eq.(7) into eq.(5) the following
relation is obtained,;

0 1\ " '

g(CDn +(U2+7/)<I)n +2ipU00 | —QZ(I)n)un:O
.. (8)

In which ®n({) and un(t) are replaced by @, and
un for simplicity. Then multiplying eq. (8) by the
boundary residual value function @, and
integrating along the whole span of the pipe and
setting the final result to zero, to get;

1

o0 IV 2 " . 1 2 o0
I{nél(Q” (U +7)D, + 2D, -Q qnn)kélcbk}
0
= 9)

It was demonstrated that the analysis of
stability of gyroscopic systems can satisfactory be
made by using two mode Galarkin analysis ! .For
non-conservative pipes such as cantilever the
accurate analysis require more than five modes
(31 Hence, the present analysis is restricted for
conservative pipes only.

Using two mode beam analysis (n =2, k =2) the
following matrix equation is resulted;

(IC] +R [A] +2i g UQ [B] - 22 [1]) {u} =0 ..... (10)

Where;
R=U%ty,
[1]: is identity matrix and;
1 1 %
. (%(I)l ®4d¢ (J)cbz ®qd¢g
A=l 1 ’
(I)cpz ®,dg (J)cpz ®,dg
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}cpl ®qd¢g }cpz ®qd¢
=P R ,
_(j)(bzuzdc; (f)‘bz ddg
1 1 "

(f)CDl ®qd¢ (I)CDz ®d¢
[C]: 1 " 1 "
éCDZ U,dg (I)CDZ D,dS

and ®; and @ are the first and second beam mode
functions for specific boundary conditions.

In the following the three types of conservative
pipes conveying fluid will be investigated:-

I.pinned —pinned pipe
In this case the mode functions and the Eigen-
values are [14I;

On(O)=sinyn{ 12 n=nwr, n=12 ....(12)
Substitute eq.(12) into eq.(11) and performing the
integrations and making use of the orthogonally
concept, the matrices [A], [B] and [C] can be
evaluated.

For nontrivial solution one must have;

— 0507 — 4.9348R + 48.705
—~i2.667Q4U

12.667QU
0502 ~19.739R + 779.28

o (13)

=0

Where;
R=U?+y

Expansion the determinant in eq.(13) leads to the
following characteristic equation;

Q*~(28.443 f2U%-49.348R+ 1656.0) Q%+ 389.63R?
- 19228.0R + 151822.0=0 ... (14)

Il.clamped-pinned pipes

The mode functions and the Eigen-values are [

cosn, —coshn,
sinn, —sinhn,

(singn-sinhnnl), 712=3.927,7.069,n=1,2 ...(15)

®n($)=cos

fn¢-coshinl-

Substituting eq.(15) into eq.(11) and proceeding
as in the above will vyield the following
characteristic equation;

Q*+(54.415R-35.903p2U?-2734.5) Q-
(0.0374RPU+1.4091 PU) iQ +475.55R?-
38951.0R+593844.0=0

I11. clamped-clamped pipes.
The mode functions and the Eigen-values are 145:-
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cosn, —cosh
. L - i flutter instability
sinn, —sinhn, : :

(singng=sinhynd) , 712 =4.73,7.853 ,n=1,.....(17)

D, ({)=cosnnl-coshmnl-

Substituting eq.(17) into eq.(11) and proceeding

as for the case of pinned-pinned pipe will result in buckling instability
the following characteristic equation:-

Q*i0.014489Q%3U+(58.291R- 44.76252U%
4303.1)Q-(0.10977RBU-5.6809 A U)i Q
+ 565.83R%- 69807R+ 1.9034x10%6=0 ....(18)

3. Results and Discussions.

For the purpose of illustration, a typical plot of
the stability boundary for clamped-pinned pipe
cpnveying fluid at y=0 and /3:0_.9 is constructed in Figure (2): Stability boundary for c-p pipe
fig.(2).To construct such a figure the roots of at y=0,3=0.5
eq.(16) are evaluated for various values of the e
dimensionless velocity U. It should be mentioned 50
that the fourth order polynomial equation like R) B9
eq.(16) gives four roots for € .However in this 0 e P
case(and for others ,also) each two of these four \} /
roots are equal in magnitude but with opposite \
signs .If these roots are squared then only two o % \ N \_ p=0.2
values of them are different . Finally the square =) \k p=0 & T
values of the roots and U are plotted to get the 20 \ .
root locus as shown in fig.(2). \

To inspect the stability behavior the following 10 ‘
rules are followed ["1:-
1. When all the roots lie in the first quarter 950
(or to the right of the line ©%=0) in
©2-U? plane the pipe is stable.
2. If at least one of the two roots lies in the . . .
second quarter the pipe is unstable. Figure (3): Stability boundary of p-p pipe at
3. Buckling instability initiates  at the y=0.
points of intersection of the root locus
with the line ©?=0 By
4. Flutter instability initiates at the i |
maximum point of the root locus. w] |

Now, referring to fig.(2) the following gl i
sequence of the stability behaviors can be i
observed:- Y

= At U? €[0,20],the pipe is stable since all ¥ .
values of ©? lie to the right of the line 1y f

0O%=0. : Jf'l L

= At U? €[20, 62], the pipe is under 2 ".
buckling instability since some values "
of ©? lie to the left. R P

= At U? €[62, 71], the pipe regains its T Rew
stability as in the first case.

= For U? >71 the pipe is at flutter
instability.

= Points A and B are the critical points of
buckling instability since they lie on the
line @?=0 -

= Point C is the critical point of flutter
instability which is the maximum point
in the plot.

\
0 500 1000 1500 2000
Q2

R

Figure.(4): Stability analysis of p-p pipe,
Ref[11]
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Figure (5): Stability boundary of c-p pipe at
y=0
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Figure (6): Stability analysis of c-p [11]
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Figure (7): Stability boundary of c-c pipe at
v=0
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Figure (8): Stability analysis of c-c pipe 11]
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Figure (9): Stability boundary of p-p pipe at
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Figure (10): Stability boundary of c-p pipe at
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B=0.5.
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Figure (11): Stability boundary of c-c pipe at
B=0.5.

To check the validity of the present approach the
results of stability of p-p, c-p and c-c pipes
according to the present approach are plotted in
figs.(3,5 and 7) while those according to Ref.(11)
are shown figs.(4,6 and 8) .As it can be seen from
these figures that the critical velocities of
buckling are coincided (taking into account that
they are squared in the present approach) .Also,
the natural frequencies of the first and the second
modes are nearly the same .

For further checking, many points in figs. (3,5
and 7) are compared with the other available
results in the literature .For example at U?=0 these
figures gives the square of the first and second
natural frequencies of corresponding beams

Yousif et al., pp.165-172

which are 79 and 41 for pinned-pinned , 1559
and 237 for clamped-pinned and 2497and 500.6
for clamped-clamped pipes as seen in Meirovitch
(141 This is true since the pipe is reduced to a
beam as the fluid velocity becomes zero
according to eq.(6). Also, in figs.(3-5) the lowest
points of intersections of the plots with the line
=0 for any P are 9.61, 20.25 and 40.7,
respectively. These are nearly the square of
n,4.5and 2 w ,respectively which are the critical
velocities for first mode buckling of the

mentioned pipes as they are given in refs 2 and
[3]

The fundamental natural frequencies Q; at y =0
can be calculated from the following
approximated formulas taken from ref. [231:-

U
leﬂz

2
2 U
Ql =3937,1- 0.747—2
3.93
2 u?
Ql =473 ,]1- 0.5572
473

for p-p, c-p and c-c pipes, respectively.

Table (1) show such calculation and associated
error between the present approach results and
those of ref.[13]

... (19)

Table (1): Comparison Q and U values between the present approach and those of ref.[13]

U Q of p-p pipe Q of c-p pipe Q of c-cpipe

Present | Ref.(13) | E% | Present | Ref.(13) | E% | Present | Ref.(13) | E%
0 9.6631 | 9.8696 -2.03 | 15.215 | 154182 | -1.3 | 22.2580 | 22.3733 | -0.55
0.6283 | 9.4889 | 9.6702 -1.86 | 15.156 | 15.2700 | -0.7 | 22.0668 | 22.2645 | -0.90
1.2566 | 8.7500 | 9.0456 -3.20 | 14.625 | 14.8167 | -1.14 | 21.689 | 21.9347 | -0.92
1.8850 | 7.6589 | 7.8957 -2.92 | 13.8596 | 14.0285 | -1.0 | 21.1258 | 21.3739 | -1.12
2.5133 | 55890 | 5.9218 -5.10 | 12.6256 | 12.8441 | -1.56 | 20.314 | 20.5630 | -1.45
*3.1416 | 0 0 0 9.895 10.1377 | -2.31 | 19.0589 | 19.4709 | -2.63
3.7699 8.255 8.6042 -4.65 | 17.5258 | 18.0466 | -2.77
*4.3982 0 0 0 15.458 | 16.2026 | -4.93
5.0265 9.1548 | 9.7716 -6.43
5.6549 3.50589 | 3.8432 -7.89
*6.2832 0 0 0

*: critical

In figs.(3, 5 and 7), the stability boundaries at g =
0.3, 0.5 and 0.9 are presented, also. As it is clear
from these figures the effect of varying g is
significant on flutter instability since the
maximum points on the plots are either shifted to
the right as £ increased or it may vanish as in
fig.(4) for p =0.3. It should be noted that
according to this effect the sequence of stability is
dramatically altered. For example in fig.(3) at
£=0.3 the sequence of stability is:- stable,
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buckling, and flutter while at p=0.9 it becomes:-
stable, buckling, stable and flutter .This also true
for the other figures .However £ has no effect on
buckling instability since the critical points for
buckling (the intersection points with line ©Q2=0)
are not affected in all cases.

The effect of the fluid pressure is presented in
figs.(9),(10) and(11) where y =0,2 and 3 are
selected .1t is clear from these figures that the
effect of increasing v is to slightly shifted of the
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stability boundary to lower values for all of the
considered pipes .However the sequences of
stability are not altered .

Finally it is important to state that ;the graphical
results given in this study can be used to test the
stability of any conservative pipe since they are
given in dimensionless form .For example for a
specific pipe (dimensions , material and
boundary conditions ) containing a specific fluid
at given velocity and pressure , the dimensionless
parameters U, and y can be calculated from
eq.(6) and the stability can be tested using the
corresponding figure .

4. Conclusions

The concept of a "stability boundary" can be
used as an alternative approach for investigating
the sequence of stability for conservative pipes
conveying fluid. This approach provide a simple
and effective method for analyzing stability at a
wide range of the fluid velocities.

The validity of present approach was examined
by comparing the present results with the
available data in the literature, and show good
agreement.

The fluid-mass ratio has a significant effect on
the flutter instability and hence the stability
behaviors .However the effect of increasing the
fluid pressure is to shift the boundaries to a
slightly lower values without altering the
sequence of the stability.
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Notations and Nomenclature
o2
%

0
():i—
ot
p-p: Pinned-pinned pipe
c-p: Clamped-pinned pipe
c-c: Clamped-clamped pipe
As Ap : Fluid and pipe cross sectional area
, respectively. (m?)
E: Modulus of elasticity. (N/m?)
I: Area moment of inertia (m*)
L: Pipe length. (m)
m¢, mp: Fluid and pipe mass per unit length,
respectively. (kg/m)
P: Fluid pressure. (N/m?)
U: Dimensionless fluid velocity.
un: Generalized coordinates
@, Shape functions
V: Fluid velocity. (m/s)
n, ¢ dimensionless coordinates
U, B, y: Dimensionless velocity, mass ratio, and
dimensionless pressure, respectively
Q: Dimensionless frequency = oL?[(ms+ mp)
IE |)1/2
o :Circular frequency .(rad/sec)
7. Dimensionless time.
pt pp CFluid and pipe
respectively (kg/m?3)

material  density,
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