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Abstract: 
      Belt is a traveling continuous 
system.Such a system can subjected to a 
static divergence and parametric 
instability. This depend on whether the 
system parameters are constant or 
varying with the time ,respectively .In 
this paper ,instability problem is solved 
analytically .Bolotin method is used to 
evaluate  the boundaries which separate 
the stable and instable regions.The 
present solution is checked with another 
solution available in the literature where 
the Variation principle is used .The 
results showed a good agreement where 
the maximum error do not exceed 5%.  
The effect of belt tension and 
transmitting speed on stability and 
natural frequency are studied .The 
results show that increasing belt tension 
can improve both buckling and 
parametric instability. Whilst, increasing 
the  speed or its mean value is limited to 
critical values to avoid buckling or  
parametric instability, respectively. 
 
Keywords: Bolotin method, 
parametric instability, divergence 

instability, initial tension1. 
 
Introduction 
Instability problem of translating media 
covering band-saws, paper webs, 
transmission belts,.etc, has been of 
academic and engineering interest. 
 
 

 
 
Belts are traveling continuous systems. 
Such systems are modeled as axially 
moving strings or beams with simply 
supported end conditions [1]. 
When a belt is working at high speeds or 
subjected to fluctuated speeds or tension 
arising from the influence of variable 
loads. two kinds of instabilities can be 
occurred ;The first kind is the static 
divergence instability or buckling 
instability .This is associated with  the 
constant translating velocity or tension, 
The dynamical behavior of such 
translating media is governed by a 
partial differential equation with 
constant coefficients :The second kind is 
the parametric instability .This kind 
occurs when the translating velocity or 
tension has a time dependent periodic 
component superposed on its mean .In 
this case  the coefficients of the partial 
differential equation will become time-
dependent periodic or Mathieu equation 
.Such cases can be noticed in many 
practical applications such as in cutting 
tools machines, compressors and 
industrial machines . 
The major task for safe operation is to 
determine the limiting values of system 
parameters at which buckling occur and 
to separate stability and instability 
regions of parametric instability. 
Parametric instability of axially moving 
media with a periodic tension has been 
investigated by some researchers. 
Wickert and Mote [2] reviewed the 
dynamical behavior of moving materials 
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with a focus on moving strings and 
beams. Mote [3] evaluated the 
parametric instability boundary of a 
translating string using numerical 
methods that involve the replacement of 
the spatial derivatives with finite 
differences and integration of the set of 
Mathieu equations. Pellicano and 
Vestroni [4] studied the complex 
eigenvalue of high speed moving string 
and tested stability under 
parametricexcitation for periodic 
loading. Mockensturm et al. [5] 
addressed the issue of stability and limit 
cycles of moving strings parametrically 
excited. Pakdemirli et al.[6] investigated 
the stability of an axially accelerating 
string. Recently, Abrate [7] studied the 
parametric instability of axially moving 
media subjected to multi-frequency 
tension and speed fluctuations. 
The available methods for the evaluation 
of parametric instability boundaries of 
such problems are theperturbation, 
variational and Galerkin method [8].The 
perturbation and variational method can 
predict a portion of stability boundaries. 
Galerkin method is based on reducing 
the partial differential equation with 
periodic coefficients into a set of 
ordinary differential equations with 
periodic coefficients, the resulting 
ordinary differential equations can be 
either cast into an eigenvalue problem or 
solved using the perturbation methods 
.Galerkin method requires trial functions 
satisfying both essential boundary 
conditions and natural boundary 
conditions. 
Liu and Huang[9] had investigated the 
problem using  a variational method . 
The parametric instability problem was 
reduced into a stationary value problem 
in the form of a classical Rayleigh 
quotient. As a result, the trial functions 

do not have to satisfy the natural 
boundary conditions. 
A linear analysis has been widely 
applied to determine the onset of 
parametric instability in a belt. The 
primary parametric instability and the 
fundamental summation resonance have 
been given special attention. 
Besides to the linear analysis nonlinear 
analysis is also existed in the literature 
The effect of nonlinearities have long 
been recognized to play a significant role 
in the parametrically excited .The 
governing nonlinear partial differential 
equation was solved numerically 
.Numerical results indicate that  the 
effects of different system parameters 
(like band speed, initial tension) are seen 
to be very similar to those exhibited by a 
Duffing oscillator [10].In These 
solutions instability is compared with the 
‘limit cycles’ response instead of the  
equilibrium condition as in the linear 
analysis. The existence of limit cycles in 
a traveling string has been reported 
recently by Chakraborty et al.[11]. In 
this reference, the equation of motion 
has been discretized to a set of coupled, 
non-linear ordinary differential 
equations with time-varying coefficients 
or scale parameter. The complex linear 
eigenfunctions were used as a biases 
function to discrete the continues system 
to finite degree of freedom. The effects 
of both external and parametric 
excitations on a Duffing oscillator have 
also been studied by Chakraborty and. 
Mallik [12]. They showed that the 
nonlinear response is normally periodic. 
The concept of non-linear normal modes 
has been used to obtain the near 
resonance response under a harmonic 
excitation [13]. Since the stationary 
normal modes do not exist for a 
traveling continuous system, 
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In the present work, the linear problem 
of stability for both static and parametric 
instability was solved analytically. 
Bolotin method is used to separate the 
primary regions of parametric instability 
.The basic concept of the solution is to 
predict the limiting cycle solution in 
term of the amplitudes and frequencies 
of the periodic component which gives 
the boundaries between stability and 
instability. 
 
Theoretical consideration 
Consider a belt running between two 
pulleys as shown in Fig. 1.For an 
element of a belt of mass (dm) is moving 
at velocity of  V and vibrates in y 
direction ,the resultant   lateral  velocity 
u  is (shown in Fig. 2),[8] ; 

u=
x

y
V

t

y









                           ……..  (1)  

 
Fig.1: schematic diagram of moving belt 

 

 
 

Fig.2:forces on belt element 
 

The inertia force of the element is; 

F=
dt

du
dm = )(

x

y
V

t

y

dt

d
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


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


   …..  (2) 

Performing the differentiation giving; 
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 Considering the tension (T) in the belt 
as shown in Fig.2, summation of forces 
at y direction gives; 
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x
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Substitute Eq.3 into 4 and noting that 
dm=m dx produces the following 
equation of motion; 
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Eq.5 can be put in the following 
dimensionless form;  
 

(V2-γ) η″+2V+   V =0     ……. (6)  

Where; 
η = y/L,ζ = x/L and γ= T /m 
 
Natural Frequency 
In this case, one must assume constant 
speed, so that Eq.6 reduces to; 
 
(V2-γ) η″+2V+ =0              …….(7) 

 
Let for harmonic motion, the solution is 
of the following form;  
 

η(ζ,t)= tie )(               …………..…(8) 

 
Substituting Eq.8 into 7 giving;  
 

02)( 22   iVV …… (9) 
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The second order differential equation 
can be solving by seeking the following 
solution;  
 

LiLi eCeC  2
2

1
1)(  …….. (10) 

 
Where C1 and C2 are arbitrary constants, 
λ1 and λ2 are the roots of the polynomial 
equation; 
 

02)( 222   VV …… (11) 

 
Substituting the values of the roots from 
Eq .11 into Eq.10 and making the use of 
Eq.8, the general solution becomes [4]; 
 

η(ζ,t) =

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 iV

LiV
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Where; 

22 )( 







V
L

                 

…… (13) 

 
The boundary conditions of a belt 
portion traveling between two pulleys 
are :- 
 
η(0,τ)=0 and   η(1,τ)=0       …….….(14)                           
 
Applying the boundary conditions on the 
general solution given in Eq.12  can give 
the following equation of the natural 
frequencies;  
 



 22 )( 


V

L

n
, n=1, 2, 3, …. (15) 

 
Static Divergence instability 
Eq.15 shows that the natural frequencies 
can becomes zero .This means that   the 
belt can be subjected to static divergence 
or buckling instability. This condition 
can be satisfied when; 

V=  = mT / ……. (16) 

 
Parametric Instability  
Consider a belt is subjected to a 
fluctuated speed with frequency Ω and 
variable amplitude of δ .The speed is 
fluctuated around its mean Vo.as shown 
in the figure below  

 
From the above figure, the mathematical 
representation of such a speed is; 
 

V=Vo (1+ δ cos Ω τ )        ………..(17)  
 

Substituting Eq.17 into 6 gives; 
 

 [Vo
2(1+δcosΩτ)2-γ]η″+2Vo (1+δcosΩτ)

 -δVoΩsinΩτ η'+ = 0     ……… (18) 

 
Analytical solution for periodic 
differential equation like Eq.18 does not 
exist in literature, however there are 
many partial solutions can be employed 
to evaluate some interesting dynamical 
behaviors .In this regard, Bolotin's 
solution is an effective method   to 
predict the periodic zone of the solution 
which lead to the boundaries instability 
regions. 
In using Bolotin solution one can seek 
the following solution [14]; 
 
η (ζ ,τ) =

)2/cos()()2/sin()(
,...5,3,1
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…… (19) 
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Substituting this solution into Eq.18, 
resulting the following series; 
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Bolotin has also showed that this series 
is rapidly converges, and when one term 
is taken (k=1) ,satisfactory results can be 
obtained .Doing so and separating the 
coefficients of sin(Ωτ/2)  and  cos(Ωτ/2) 
one can gets; 
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VoΩ X′1=0                                ……. (21) 
 
Eqs.21 are two coupled ordinary 
differential equations and their solutions 

give the upper and lower boundaries of 
principal instability regions. 
To solve eqs.21 the following solution 
can be used [14]; 
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Where C1j 's and C2j 's  are arbitrary 
constants. These constants are related to 
each other when they substituted into 
any  of Eqs.21. 
When the solutions given in Eqs.22 are 
applied to Eqs.21, the following 
determinant will be resulted:- 
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Eq.23  can be used to find the four roots 
of λ which are denoted by λj in Eq.22. 
The boundary conditions are as follows; 
 X1(0)=0, X1(1) =0, 
Y1(0)=0, Y1(1)= 0                     …….(24) 
 
Applying the boundary conditions on the 
solutions given in Eq.22 gives a matrix 
equation .For a nontrivial solution the 
following determinant must be satisfied;                                                                                     
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Where:- 
λ1,…… λ4  arethe roots of  Eq.23 as 
stated before, and , 
Kj= Vo Ω λj /[( Vo

2-γ+ δ2Vo
2 /2- δVo

2 ) λj
2 

–1/4Ω2 ]       , j =1  to  4  
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The values of (Ω)  and (δ) which 
satisfying Eq.25 give the upper and 
lower boundaries of principal instability 
regions for the belt  , A computer code 
was written  in  MATLAB software for 
solving Eq.25. 
 
Results and Discussions  
Shown in Fig.3, the effect of the two 
main belt parameters namely; the speed 
and tension on the fundamental natural 
frequency .It is clear from the figure that 
increasing the speed reduces the natural 
frequency and there is a possibility that 
the natural frequency to be zero as it is 
clear from examining Eq.15, 
hence,divergence instability can be 
initiated .For example this figure shows 
that at T=500N the natural frequency is 
nearly zero  at V=40. 
On the other hand, this figure indicates 
that increasing the tension increase the 
natural frequency. 
 

 
Fig.3: effect of belt speed on the first 
natural frequency at different initial 

tensions 
 
In Fig.4, the critical speed of buckling 
instability is plotted against the belt 
tension. This figure shows that critical 
speeds increase with the increasing of 
the tension, hence, one can avoid 
buckling instability by increasing the 

initial tension of belts providing that the 
belt working within its allowable stress 
limit. 

 
 

Fig.4: effect of initial tension on belt 
critical speeds of buckling 

 
To check the validity of the present 
solution, the results of Ref.9 and the 
present work are shown in figure 5.The 
excitation frequencies are normalize 
relative to the natural frequency .It is 
important to mention   that in ref.9 the 
Variationalmethod is used .As it is clear 
from the figure that, the present solution 
is in a good agreements with Ref.9, 
where the maximum error dose not 
exceeding 5%.  
For investigating the parametric 
instability of fluctuated speed and the 
effect of belt parameters, Figs.6 to 8 are 
plotted In Fig.6, the boundaries of the 
principal instability regions at the lowest 
three modes are plotted for 0 to 0.5 
excitation amplitude δ. 
The other parameters are;  mean 
speed=20m/s and tension=1000N . It is 
interesting to show that ,these regions 
are emerged at 340,670 and 1300 rad/s  
for the first ,second and third mode, 
respectively. 
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Fig.5: comparison of the present solution 

with Ref .9 
By using Eq.15 (or referring to Fig.3 for 
the first mode ) it is simple to show that 
these are the values of the twice of the 
natural frequencies for the corresponding 
modes. This is coincided well with the 
fundamental concept of the parametric 
instability of any elastic system where 
the primary instability regions started at 
2Ω (or half time period) [4].  

 
Fig.6: the lowest three modes of 

instability regions of belts at different 
excitation parameters 

 

 The effect of belt initial tension on the 
instability regions at the lowest two 
moes are investigated in Figs.7.It is clear 
from these figures that increasing the 
tension tend to raise these regions 
without affecting their sizes. 
 Finally, the effect of mean belt speed on 
the instability regions are studied in 
Fig.8-a and b.      
In these  figures the main speeds are 
given three different values namely 
(20,30 and 40 m/s).As it is clear from the 
figures that the speed  has very 
significant effects on the  regions of 
instability; firstly,  it shifts the regions to 
a lower values (the reduction in the 
regions is about 15%)  ;secondly, it 
expands the region(about six times ) 
.This means that the speed has the major 
effect on the parametric instability and 
there is certain limits of speeds which 
must be not exceeded to insure  safe 
operation. 
 

 
                      
                              a: first mode 
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b: second mode 

 
Fig.7: effect of initial tension on 

instability reigns for the first and second 
mode,(a) and (b) 

 
a: first mode     

 
b: second mode 

 
Fig.8: effect of belt mean speed on 

Instability reigns for the first (a) and 
second mode (b) 

 
Conclusion: 
In this paper both static and parametric 
instabilities were investigated 
analytically. 
 The effect of the main belt parameters 
on stability was inspected. In case of 
parametric excitation caused by the 
fluctuated speed belt ,Bolotin method  is 
used to separate the primary regions of 
instability . 
From examining the results the 
following main conclusions can be 
stated; 

1- The present method of solution is 
in a good agreement as compared 
with the other reported method 
where variation technique was 
employed .The results show that 
the error is not exceeded 5%. 

2- Increasing the tension has two 
advantages on the stability 
behavior; it increases the critical 
speed of buckling and raises the 
boundaries of instabilities. 
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3- Increasing belt speed is limited 
by the critical limits where 
buckling instability can be 
initiated, as well as, it shifts 
instability regions to lower 
values with wider sizes, hence it 
leads to dangerous operating 
conditions.  
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  طریقھ بولوتن موالبارامتري للسیور باستخداعدم الاستقرار ألانبعاجي 
  
  

  محمود رشید اسماعیل

 ةقسم الھندسھ المیكانیكی –كلیھ الھندسھ   - جامعھ النھرین

 

  الخلاصة:

السیور ھي منظومات انتقالیھ متصلھ وفي مثل ھكذا منظومات یمكن ان یحصل عدم الاستقرار 

بالانبعاج والبارامتري وذلك یتوقف على كون معاملات المنظومھ ثابتھ او متذبذبھ .في ھذا البحث تم 

مناطق  حل مشكلھ عدم الاستقرار تحلیلیا .لقد تم استخدام طریقھ بولوتن لایجاد الحدود التي تفصل

الاستقرار عن مناطق عدم الاستقرار.تم التاكد من الطریقھ الحالیھ وذلك بمقارنتھا مع طریقھ اخرى 

%.تم دراسھ ناثیر الشد والسرعھ على 5منشوره .بینت النتائج توافقاجیدا حیث لم تتعدى نسبھ الخطأ 

سن الاستقرار بینما یجب ان الاستقرار والترددات الطبیعیھ .بینت النتائج ان زیاده الشد یمكن ان تح

تكون السرعھ او معدلھا محدده ضمن قیم معینھ لتجنب مخاطر عدم الاستقراربالانبعاج او 

  البارامتري. 

  

  

 
 




