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Abstract:

Electromechanical systems (EMS) may be
considered as devices transforming electrical into
mechanical energy. Every system that belongs to
the electromechanical class can be decomposed in
an electrical (ES) and a mechanical subsystem
(MS). The motion control systems can be quite
complicated because many different factors have
to be considered in the design of
electromechanical systems. These factors can be
summarized as the nonlinearity, non-smoothness
in its model, the uncertainty in system model
parameters and  non-satisfying  matching
condition.

In this paper a new sliding mode control
design approach for the EMS is proposed without
neglecting the inductance in the electrical part or
approximating the non-smooth perturbation. The
first step in the proposed controller design
consists of transforming the ES to a low pass filter
(LPF) and then (the second step) designing a
sliding mode controller (SMC) to the MS that will
reject system model uncertainty and the effect of
non-smooth disturbances. With a suitable selected
LPF time constant, the SMC which controls the
MS is nearly the equivalent control and as a result
the chattering is attenuated greater than that in the
case of classical SMC which designed by ignoring
the electrical subsystem and also with a smaller
control effort. The simulation results, of applying
the proposed sliding mode control to an
electromechanical system, show its superiority
compared with classical SMC designed in two
effective SMC features beside forcing the state to
follow the desired position where chattering
amplitude is greatly reduced with a significant
reduction in control action value (approximately
equal to third the required input voltage with the
classical SMC).

Keywords: Electromechanical systems,
Sliding mode control, Low pass filter, Chattering
attenuation
1. Introduction:

Electromechanical systems may be considered

as devices transforming electrical into mechanical
energy. They establish a very important class of

208

Ruaa Muayad AL-Wardie
University of Technology

Control & Systems Engineering Department

Baghdad, IRAQ

industrial components often found in current
practical applications defining the ideal link
between computer-based drivers and movement
generators systems. From the control point of
view their structure is quite interesting since they
belong to the class of the so-called under actuated
systems in the sense that only the electrical part is
directly actuated; the mathematical models that
represent their dynamical behavior are, in general,
nonlinear and, in many cases, the state is not
completely available for measurement [1]. The
main assumption is that every system that belongs
to the electromechanical class can be decomposed
into an electrical and a mechanical subsystem
which it can be viewed as the interconnection of
electrical and mechanical lumped elements,
respectively. For the electrical subsystems these
elements are inductances, capacitances and
resistances, while for the mechanical subsystem
are springs, masses and dampers [1].

Motion control is concerned with manipulating
power to control the movement of a mechanical
system. A large amount of motion control is now
performed using electric motors, so that it will be
our main focus. Motion control systems can be
quite complicated because many different factors
have to be considered in the design. The
following issues must typically be considered:

- Reduction of the influence of plant disturbances
- Attenuation of the effect of measurement noise
- Variations and uncertainties in plant behavior

It is difficult to find design methods that
consider all these factors, especially for the
conventional control approaches where control
designs involve compromises between conflicting
goals. In order to design control systems to get
high  performance and robustness when
controlling such complicated processes, advanced
controllers have been introduced.

From control design point of view there are
mainly three problems for the application of many
control theories which can be summarized as
follows;

1) The nonlinearity and non-smoothness in
its model due to the friction model and
the nonlinear spring.
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2) The uncertainty in
parameters.

3) The matching condition is not satisfied
(where the perturbations that enter the
state equation do not at the same point as
the control input).

system  model

The solutions of these problems, which exist in
literature, can be classified to two types:

In the first, the electrical part is ignored
(the inductance in the mathematical model of the
DC motor is ignored), consequently this leads to
delay in the performance of the system [2], [3],
[4], [5].

The second solution is focused when the
electrical part is not neglected and the external
and un-modeled dynamics (the perturbation) are
smooth. For the smooth perturbation the control
design uses a systematic Backstopping [6], but
when the perturbation is not smooth in this
situation the best that can be done is to regulate
the state to a positively invariant set including the
origin and stay there for all future time [7].

Another solution for control design is by using
Backstopping but after approximating the
perturbation (making it smooth) [8]. On the other
hand, the complete electromechanical system
model can be used for control design but with
nominization of the system model to a nonlinear
canonical form [9].

The sliding mode control method, can be
solved the first and second problems since it can
deal with these types of nonlinearity and non-
smoothness in affecting system behavior. The
third problem is frequently arises in the
electromechanical system where the uncertainty
in system model and the disturbances does not
appear in the control channel. The effect of the
mismatched uncertainty and disturbances can be
attenuated, but not eliminated, as in case of using
integral sliding mode control (ISMC) [10].

In this paper a new approach is suggested for
an electromechanical system control design
without neglecting the electrical subsystem (ES)
or approximating the non-smooth perturbation.
First the controller is designed to transform the
ES to a low pass filter (LPF) with a suitable small
time constant. Then a control law is derived for
the mechanical system using sliding mode control
theory which it is able to force the mechanical
state to the desired reference in spite of the
presence of uncertainty and external disturbances
in the electromechanical system model. The
simulation results for a typical electromechanical
system in the subsequent sections will
demonstrate the effectiveness of the proposed
approach.

209

AL-Samarraie, AL-Wardie, pp.208 - 218

2. Electromechanical Model

Description:-
g @
™ Y—o
~
]
~
l
motor
e

Figure 1: Schematic diagram of the
considered electromechanical sample system,
an inverted pendulum actuated by a DC
motor [11].

The DC-motor can be mathematically modeled
by using the dynamic equivalent circuit of DC-
motors. The voltage equation of the armature
circuit under transient given by the following
equation [11]:

, dig
va=Rala+LaE+vl7 . (D)
where:
v,-the source voltage (voltage)
i,-the motor armature current (Amber)

v, = k,wy,-the back emf (voltage)

From the dynamics of motor load system:
dom
] dt

where [11]
T = ki,
T, = —lmgl sin(g)
L v v
®)
where:
T,T,- are the motor electromagnetic torque and
the mechanical torque of the load, respectively
and 6-the angle of the pendulum with the upright
position being zero. The other parameters are
described in Table (4.1)

Now letx; =80,x, =60 = w,,, x3 = i, and
the manipulated variable u = v,then, the

mathematical model in Egns. (1), (2) can be
rewritten as follows:

- (2

:T_TL_Clwm

551 =X, (4)
X, = %(kmx3 — 1%, +)l/ mgl sin();—l)) e (B)
%3 = 7 (1 — Roxs — kyy) . (6)
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1 k k
Let: ay; = ;mgl ,Oyy = C]—l , A3 = Tm as, = T"

, Q33 = RL—“ ,and bz = %then the system becomes:

_)‘Cl = xZ (7)
X, = @yq sin (’;—1) — AypXy + Ay3X3 . (8)
X3 = —0a32Xy — A33X3 + b3u . (9)

Where Eqs (7) and (8) are for the mechanical
subsystem (MS) and Eq. (9) is for the electrical
subsystem (ES).

3. Sliding Mode Control:

Sliding-mode control (SMC) is a robust
technique, well known for its ability to reject the
external disturbances and model uncertainties
satisfying the matching condition, that is,
perturbations that enter the state equation at the
same point as the control input. SMC has other
advantages as well, like ease of implementation
and reduction in the order of the state equation.
The conventional SMC design methodology
comprises two steps:

First, design a sliding manifold (named also
as switching manifold) such that the system’s
motion along the manifold meets the specified
performance. Second design a (discontinuous)
control law such that the system’s state is driven
toward the manifold and stays there for all future
time, regardless of disturbances or uncertainties
In spite of the robustness of SMC against the
matched disturbances and ease of implementation,
but it has two main disadvantages:

The first is in the case of mismatched
disturbances. F. Castafios and L. Fridman suggest
the use of the integral sliding mode to reject the
matched disturbances and the Hoo techniques to
attenuate the unmatched one [12]. The Integral
Sliding Mode Control (ISMC) is also applied for
the nonlinear Systems with matched and
mismatched perturbations by Matteo Rubagotti
et.al. [10]. The second problem is the chattering
behavior which frequently appears in sliding
mode control system for many reasons such as the
non-ideality of the switching process as shown in
the excellent reference by V. I. Utkin [2009][13].

In the following subsection is given the design
of sliding mode controller for  the
electromechanical system that includes a primary
design step devoted to transform the electrical
subsystem to a low pass filter with the desired
time constant.

3.1 SMC Design for electromechanical

system:

In this section a new SMC is designed to the
electromechanical system that taken into
consideration the uncertainty in system model and
the presence of the nonlinearity. Moreover the
mismatch and chattering problems are considered
where the controller designed first to transform
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the electrical subsystem to a low pass filter with
desired time constant. Now the mathematical
model of the electromechanical system as derived
in section two is given by

X, =x, . (10)
X2 = f2(x) + g2(X)x3 11)
X3 = f3(x) + gz (x)u (12)

where  f,(x) = ay, sin (3;—1) — QX , g2(x) =

a3, f3(X) = —azx; — azzxz, and gz(x) = bs.

The first step in the present design for the
sliding mode control is to transform the electrical
subsystem (Eq. (12)), to a low pass filter as
follows;

Let, f5(x) + gs(X)u = %(—x3 +9) ... (13)
Then Eq. (12) becomes:
X = %(—x3 +9) e (18)

Where T is the time constant (selected) for the
Low Pass Filter (LPF) induced by the controller u
where it is assumed that f3, g; are known without
uncertainty. Accordingly the system dynamics
becomes:-

X, =x e (15)
(“45){x2==f§<x)+-gz(x)x3 e (16)
(ES) {x3 =2 (x5 + ) e (A7)

To this end replace x; by 9 in Eq. (16) the
sliding mode controller for the MS may then be
designed as follows; dividing the system into
nominal part and uncertainty part
561 = xz }

. ... (18
%2 = fo() + 20 ()0 + 8(x,) (18)

Where f,,(x) and g,,(x) are the nominal
functions of f,(x) and g,(x) respectively while
&(x,u) is the uncertainty term resulting from the
uncertainty in system dynamics. 6 (x, u), which is
given by
S(x,u) = Afy,(x) + Ag,(x)9 e (19)

Let the sliding variable s (named also in the
literature as switching function) be defined as;
s=e;+ce N (0))
Consequently the sliding variable time derivative
is
S" = éz + Cél e (21)

where ¢ > 0 and

e =X —Xg,6; =€

e, =de; =x,— X5, 6, =X, — X4

When the sliding variable reaches the zero value
(the switching manifold (s = 0) the error
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function  e; will decay asymptotically to the
origin since ¢ > 0. The second step is devoted to
derive the control law that will enforce the state to
reach the sliding manifold in finite time.

From Eq. (18) s becomes

$ = fr0(x) + G20 ()9 + 8(x,u) + ce, — Xy
= f20(%) + 920 ()0 + 8 (x,u) + cx; — ¢y
_xd (22)
To design a sliding mode controller the
candidate Lyapunov function is selected as

= |s|
and its time derivative V is

V=sxsgn(s), s#0

This is known as the generalized derivative
since the candidate Lyapunov function is non-
smooth [14].
or
V = sgn(s) * (foo(x) + g2o ()9 + 8(x,u)

+cx,) . (23)

The ask is to select 9 such that V is negative
definite. In this work ¥ is selected as in the
conventional sliding mode by

-1 (f2o(x) + cxy + k(x) * sign(s)
T g20(®) ( —CXg — Xq )

. (24)
Then V becomes;

V = sgn(s) * (—k(x) * sign(s) + 5(x,u))
= —k(x) + sign(s) * §(x,u)
< —k(x) +[5(x,u)| .. (25)
The gain k(x) that will make the inequality
(25) less than zero (attractiveness of the sliding
manifold and sliding motion)is selected as
follows;

k(x) > 160, w)| .. (26)
where
16Ce, W = [Af,(0)| + IAgz(x)ﬁI
= [8£)] + [Ag2(0) * {(—) (fao () + ex, +
k(x) = sign(s) — cxy — xd)}|
=8f@1 + 220 * 120 () + cx, = ety
iyl + |3f2—gx"§ k(x) . (27)

Substituting Eq. (27) in the inequality (26) and
solving for k(x) we obtain:

211

AL-Samarraie, AL-Wardie, pp.208 - 218

k(x) >
max{|af, O+ |22+ (1f;0 () +exp—ciia— %ab)

AgZ(x)l )
920(x)

1-max(
or
k(x) = k, +
max{|af, ()1 +[522E3 (1 f50 () +exp—cta= %aD)}

Agz(x)|)
g20(x)

1-max(

. (28)
where k,, is a positive constant, and

|Af,(x0)| = |Aa215in(x_1) + Aazzxz|
< |Aa21||sm( Y| + |Aaz,|]x,],
|Ag2 ()| = |Aaysl, and
(If20(x) + cx; —cXg — Xq4l
— a21o Sin (2;/_1) - aZZon + sz

—Cde - Xd

an (%)

+clkgl + |Xd|
The control law u eventually is given by:

= — (~f5(0) + 7 (=23 +9))

+|c—

< 10 Az20|1%2|

. (29)

Finally the control design idea, that is
presented in this work, can be summarized here as
follows;

1) Transforming the electrical subsystem via state
feedback to a LPF with the desired time constant.
This step (which it is a primary control design) is
a continuous function of the EMS states.

2) Reducing the dynamical model of the
electromechanical system by ignoring the LPF for
small time constant. This step reduce the model to
a mechanical system only.

3) Designing a sliding mode controller
(discontinuous controller) for the mechanical
system where the mismatch property is removed.
The designed discontinuous controller will be
able to controlling the mechanical subsystem in
the presence of the uncertainty and disturbances
in system model.

3.2 The Control Design and Chattering

Attenuation Property:

The controller which is the input to the low
pass filter (LPF) consists of a continuous primary
controller and the discontinuous controller while
the output of the LPF is the actual control input
for the mechanical system. The output of the LPF
with suitable time constant will be the equivalent
control for the sliding mode controller [13].
Therefore the control system insensitivity to
uncertainty and external disturbances are
preserved especially after reaching sliding
manifold. Moreover the chattering in system
response which is directly related to the amplitude
of the discontinuous control is attenuated since
the actual control affected the mechanical system
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will have smaller discontinuous control gain k at
the sliding manifold.

4. Simulations Result and Discussion

In this section, the numerical simulations for
the electromechanical system implemented are
based on the full order model as given in Egs. (10,
11, 12), with the control law from Eqg. (29) and
k(x) as determined in Eq. (28). The simulations
are performed using MATLAB with initial
condition (0(0),6(0),i(0)) = (0,0,0) and the
parameters for the electromechanical system as
given in table (1) below. In addition the slope
used for the sliding manifold is ¢ = 35

Table 1: The parameters used for the
electromechanical system [11]

Parameter Definition Value Units
R, Armature resistance 0.316 Q
Lg Armature inductance | 0.00008 H
km Torque constant 0.0302 Nm/A
kn Induction constant of | 60/317 Vs

the DC motor

Ji Moment of inertia of | 1.3400e- | kg m?

the motor load system 005
c Friction constant 0.003 |Nms/rad
y Gear reduction of the 91

motor

m Pendulum mass 0.3 Kg
g Gravitational constant | 9.81 m/s?
l Pendulum length 0.5 M

Two simulation tests are presented below
which aim firstly to show the ability and features
of the proposed sliding controller as derived in
section 3.1, and secondly to compare the obtained
results with the sliding mode controller designed
after ignoring the inductance in the electrical
subsystem. The comparison include the time
required to reach the reference value, the control
input and the chattering that is induced due to the
discontinuity in the control law. The classical
SMC with ignored inductance is derived in
Appendix A (Equation (A22) and Eqg. (A26) for
the control law and the gain k respectively).

Test one: Reference angle is constant (6, =
0.175 rad)

Figure (2) shows the simulation result for the
angle 6 with time and with variation in moment of
inertia equal to (20%). Plotting the sliding
variable s(t) demonstrate the effectiveness and
the robustness of the sliding mode controller
where the system dynamics is free from the
uncertainty in moment of inertia when s(t)
becomes equal to zero after (0.2 second). The
sliding variable is plotted versus time in figure (3)
with a small bound of oscillation around the
switching manifold. In figure (4), the control
action u(t) is plotted for the electromechanical
system using the proposed sliding mode
controller. In addition figure (5) shows the phase
plot of x, = 6 vs. x; = 6.

AL-Samarraie, AL-Wardie, pp.208 - 218

Figures (6)-(9) summaries the simulation
results for the electromechanical system with
ignored(negligible) inductance of the DC motor
(L=0). Figure (6) shows the simulation result for
the angle 6 versus time and with variation in load
equal to (20%) while figure (7) plots the sliding
variable s(x) with time. The time required to
reach the sliding manifold does not exceed
0.01 second. The control action u(t) is plotted
for the electromechanical system control system
with ignored inductance (L) in figure (8). Figure
(9) shows the phase plot of x, =6 vs. x; = 6.
Finally figures (10) and (11) summarize the phase
plot of x, = 6 vs. x; = 8 and the control effort
u(t) versus time for the electromechanical
system with and without ignored inductance (L).

As mentioned previously, two features of the
present proposed SMC  can be distinguished
from figures (2)-(9) which are; chattering
attenuation and the magnitude of the control
effort. Chattering attenuation is well clarified for
the proposed controller when comparing Figs. (3)
and (7) and it can also be deduced from the plot of
the control input in Figs. (4) and (8), where a high
oscillation is shown in Fig. (8) for the case of
ignoring inductance. As a final proof for
chattering attenuation property in the proposed
controller is the phase plane plot and the control
effort for the proposed and the classical SMC
plotted in Figs. (10) and (11) respectively. In
these figures the amplitude of oscillation around
an average value can be taken as a measure for
state chattering. Figure (10) plot the amplitude of
the state oscillation around the sliding manifold
which it is greatly reduced when using the present
proposed controller. In addition, the attenuation
property can be deduced from Fig. (11) where the
control input voltage highly oscillated around an
average value represent by the control effort using
the proposed control law. The control voltage
according to the proposed control law is nearly
equal the equivalent control [13] (it also named
“the real sliding mode control” [15]) where the
sliding motion is preserved with less chattering
amplitude. The control input (the voltage)
required in this design is 0.77 Volt while in the
case of ignoring inductance its value is 2.2 Volt
(approximately three times) (Fig. (11)).
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Figure 5: phase plot of x, vs. x, for the
Electromechanical System
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Figure 7: Sliding Variable s(x) vs. time For
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Figure 11: Control Action u(t) vs. time for the
Electromechanical System with and without
ignored inductance (L)

Figure 9: phase plot of x_2 vs. x_1 for the
Electromechanical System with ignored
inductance (L)
Test two: Reference angle is piecewise constant
6, =0rad. for 0<t<1
=0.175rad. for 1<t<1.5
=0 rad. for 15<t<?2
=0.175 rad. for 2<t<25
=0rad. for 25<t <3
The ability and the effectiveness of the
proposed controller is again tested for a piecewise
constant reference angle given above. The
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simulation results are plotted in Fig. (12) to show
the ability of the SMC in forcing the angle 6 to
follow the desired trajectory with the variation in
load equal to (20%) while the sliding variable
s(x) and the control action u(t) are plotted with
time in Figs. (13) and (14) respectively. As can be
seen from Fig. (13) the amplitude of state
oscillation around the sliding manifold is small
and consequently the chattering is attenuated.
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Figure 12: Angle vs. time for the
Electromechanical System
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Figure 13:Sliding Variable s(x) vs. time For the

Electromechanical System
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5. Conclusions

In this paper a sliding mode control for
electromechanical systems was developed with
new approach. Results show that the proposed
control scheme improves performance of
electromechanical ~ systems  compared to
conventional control schemes. Namely the
proposed method consists of transforming the
electrical subsystem to a Low Pass Filter with a
suitable time constant allows, then designing a
sliding mode controller to the mechanical
subsystem in the usual way. This approach
avoiding neglecting the electrical part (ES) or
approximation the non-smooth perturbation and
achieving the matching condition. As results the
chattering is attenuated with smaller control
efforts (the voltage). The simulation results prove
first the robustness and effectiveness of the
proposed controller for a bounded uncertainty in
system parameters with the presence of
nonlinearity. Secondly the simulation results, for
the reference pendulum angle 6, = 0.175 rad,
show that the chattering is attenuated when
compared with design sliding mode control of
electromechanical system with ignoring the
electrical part. In addition the control effort is
reduced approximately three times the control
efforts value required for the SMC with ignoring
the electrical part.
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Appendix (A): SMC design with
ignoring inductance
The electromechanical system model:

[14]

X‘l = x2 (Al)
X, = %(kmx3 —Cyx, + %mgl Sin(%l)) (A2)
X‘s = %(_Rax3 - kan + u) (A3)

To simplify the electromechanical system
model, the motor inductance L is ignored (i.e., by
considering L = 0). Accordingly the
electromechanical system model in Equations
(A.1-A.3) are reduced to a system with lower
dimension as can be noted in the following steps:

Lxz = (U — RgX3 — kyXy (A4)
For L=0

0~ —Ryx3 —kpx, +u (A.5)
Roxs = —kyx, +u (A.6)
Now solving for x5 yields:

X3 = _R—I:‘xz + Riau (A7)

Substitution the value of x; from Equation
(A.7) into Equation (A.2), yields:

)'Cl = Xz (A8)
. 1 —kn, 1

X, = j(km R, X2 +R—au) — Xy +

}l/mgl sin("y—l)) (A.9)

The system can be arranged as follows

X1 =x, (A.10)
Xy = ﬁmglsin (’;—1) — (%—% )x, +$u
(A11)

Let:

az1 =%mgl,a22 =C]_1+kﬁtn:b2 Zﬁ



NUCEJ Vol.18 No.2, 2015

The reduced electromechanical system can be
written as:

561 == xz
. . A.12
X, = a,; sin (’;—1) — Ay Xo + byu ( )
Let f,(x) = a,; sin (%) — AyyXy
g2(x) = b,

x1 == xz

} (A.13)
X, = f2(x) + gou

Writing Equation (A.13) as a hominal and
perturbation term, yields;

X =X,
} (A.14)
Xy = f20(%) + goou + 6(x,u)

where f,,(x) and g,,(x) are the nominal
functions of f,(x) and g,(x) respectively while
&(x,u) is the uncertainty term results from the
uncertainty in system dynamics. §(x,u) is given
by

§(x,u) = Af>(x) + Ag,(Nu (A.15)
Let the sliding variable be defined as;
s=e,+ce; (A.16)

Consequently the sliding variable time derivative
is

where

e =Xy —Xg,€; = €
€2=d€1=x2—xd, é2=x2—56.'d
§=é2+Cé1=X2—5éd+C(x2—xd)

From Eq. (A.14) $ becomes

$ = fr0(%) + goo()u + 8(x,u) + cx, —
kg — Fy (A.18)

To design a sliding mode controller the candidate
Lyapunov function is selected as

V=|s| (A.19)
and its time derivative V is
V =$=sign(s), s#0 (A.20)
or
V = sign(s) * (f20(x) + g20()u +

S(x,u) + cxy — cxg — %g) (A.21)
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The ask is to select u such that V is negative
definite. In this work wu is selected as in the
conventional sliding mode by

1 . .
w= (= () = 3, = ity — g -

k(x) * sign(s)) (A.22)

Then V becomes;

V = sign(s) * (—k(x) * sign(s) + 8 (x,u))
= —k(x) + sign(s) * §(x,u)

< —k(x) *+[6(0x, u)| (A.23)

The gain k(x) that will make the inequality (A-

23) less than zero (attractiveness of the sliding

manifold and sliding motion) is selected as

follows;

k(x) > 16(x,u)| (A.24)
where

[8Ce,wl = 15| +14g, Gl
=8%,001 + [8g2() * { (=) (oo (@) =

cx, = citg — Fq — k(2) * sign(s)) |
=18£001 + 29 10 () — e, — g —

Ag () g20(x)
g2 (X
s2000| * K (A-25)

Fal + |

By substitute Eq. (A.25) in the inequality (A.24)
and solving for k(x) we obtain:

k(x) >
max{|af, (0l +[5228]«(1fz0 () el [+ clital +1al )
Aga(x)
1-max( |g20(x)| )
or
k(x) =
max{[/, )1+ 2223 s (1fz0 (Ol +clxz [+clital +laD) )
o Aga(x)
1-max([gZ255)

(A.26)
where k, is a positive constant and

|Af,(x)] = |Aa215in(3;—1) + Aazzxz|

. oxl
< |Aa21||sm(7)| + |Aaz,||x,|,

|Ag,(x)| = |Aby],
|f20(x) — cx; — ciq — ¥4l =

. (%1
Qaz10 SN (7) — A20X2 —

CXy — CXg — X4
. X1
sin (—)
14

< laz1,l +agz, + cllxa] + clXg] + %4l
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