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Abstract 
     This paper presents the dynamic model 

identification algorithm of the continuous stirred 

tank reactor (CSTR) using a multi-layer 

perceptron (MLP) neural network topology. The 

neural network approach for (CSTR) dynamic 

modeling is trained by using a particle swarm 

optimization (PSO) technique as a simple and fast 

training unsupervised algorithm. Polywog wavelet 

activation function is used in the structure of MLP 

neural network. The identification algorithm 

given in this paper has been proved to be 

reasonable and precise via Matlab simulation 

results in terms of fast, stable and minimum 

number of fitness evaluation for the CSTR 

modeling.   
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Particle Swarm Optimization.  
 

Introduction 
 

     In control engineering, modeling and 

identification are important steps in the design of 

control, supervision and fault-detection system. 

Simulation modeling provides an effective and 

powerful approach for capturing and analyzing 

complex manufacturing systems based on 

computer generated data [1]. 

    The problem of modeling of continuous stirred 

tank reactor (CSTR) is always attracting task for 

control system engineers because it's strong 

nonlinear behavior. Models can be used for 

simulations, analysis of the system's behavior, 

better understanding of the underlying 

mechanisms in the system, design of new 

processes and for controlling systems [2]. 

    There are different modeling approaches for 

CSTR model as follows: Fuzzy clustering used 

for modeling the CSTR through a combination of 

local linear models as a means to capture global 

dynamic characteristics of complex CSTR system 

as explained in [2]. On-line identification is 

proposed in [3] that consisted of a modified 

growing and pruning algorithm for radial basis 

function (MGAP-RBF) neural network which 

used for affine modeling of nonlinear and time 

varying CSTR system. Also, in the real time as 

proposed in [4] a low cost embedded CSTR 

system based on an inexpensive microcontroller 

using the full neural networks for training and 

validation the system model using back 

propagation learning algorithm. 

    In addition to that, an on-line recursive least 

square identification method based on auto-

regressive exogenous input (ARX) was used to 

have knowledge about dynamic behavior of 

CSTR system as explained in [5]. 

    The CSTR model was identified with Hopfield 

network and it was relative degree, state variables 

and lie derivatives can be obtained from the 

identification network as a first order linear 

system as proposed in [6]. 

     The main advantages of the presented 

approach are useful to build a precision nonlinear 

model from measured data by using a PSO as a 

simple steps proposed algorithm and fast the 

weights training of the neural network model to 

identify nonlinear systems accurately and to 

overcome the most important learning problems. 
 

CSTR Mathematical Model 
     Consider standard two-state (CSTR) with an 

exothermic irreversible first-order reaction 

BA take place, the heat of reaction is removed 

by a coolant medium that flows through a jacket 

around the reactor, as shown in figure (1) [4 and 

5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dynamics of system can be described by the 

following two nonlinear ordinary differential 

equations [7]: 

 
 

 
 q c  (t) , T cf  

 

Coolant 

 
C af  , q , T f  

 

Reactant 

q c (t) , T c (t) 

C a (t) , q , T(t) 

 

Product 

Figure 1: CSTR with cooling jacket [4,5]. 
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    The nominal CSTR operating conditions can be 

shown in table (1). 
 

Table 1: Nominal CSTR operating 

conditions [7] 

Parameter Description 
Nominal 

Value 

q Process flow-rate 100 lmin-1 

Caf 

Inlet feed 

concentration 
1 mol l-1 

Tf Feed temperature 350K 

Tcf 

Inlet coolant 

temperature 350K 

Vol Reactor volume 100 l 

ha 

Heat transfer 

coefficient 

7*1010 cal 

min-1.K-1 

ko 

Reaction rate 

constant 

7.2*1010 Min-

1 

R
E  Activation energy 9.95*103 K 

H  Heat of reaction 
2*105 cal 

mol-1 

c,  Liquid densities 1000 g l-1 

Cp Cpc  Specific heats 1 cal g-1. K-1 

qc Coolant flow-rate 103.41 l.min-1 

T 
Reactor 

temperature 
440.2K 

Ca 
Product 

concentration 

8.36*10-2 mol 

l-1 

 

 

 

Modeling Approach 
 

    To describe the dynamics model of (CSTR) by 

using multi-layered feedforward neural network 

(MLFNN), as shown in figure (2) which consist 

of the nodes of input layer, hidden layer and 

output layer as (4-7-1) respectively. 
 

 
Figure 2: The MLFNN act as modeling [8]. 

    The input and output units interact with the 

outside environment such as normalized and de-

normalized data inputs and outputs respectively, 

while the hidden does not. The input units are 

only buffer units which pass the signals without 

changing them. The output unit is linear units [8]. 

The hidden units are non-linear Polywog wavelet 

activation functions [9], as shown in figure (3). 

 

 

Figure 3: Polywog wavelet function 
 

     A multi-layer perceptron model is composed 

of many interconnected processing units called 

neurons or nodes, as shown in figure (2). The 

network notations are as follows: 

anV
: Weight matrix of the hidden layers. 

aVb : Weight vector of the hidden layers. 

baW
: Weight matrix of the output layer. 

bWb : Weight vector of the output layer. 

Where 

n is equal to four. 

a is equal to seven. 

b is equal to one. 
  

     To explain these calculations, consider the 

general a’th neuron in the hidden layer shown in 

figure (2). The inputs to this neuron consist of an 

n– dimensional vector and (n’th is the number of 

the input nodes). Each of the inputs has a weight 

V  associated with it. The first calculation within 

the neuron consists of calculating the weighted 

sum anet
 of the inputs as [8 and 10]: 

a

nh

a

nana VbbiasZVnet 
1              ….. (2) 

where 

 nh is number of the hidden nodes and Z is the 

input vector. 
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Next the output of the neuron ah
is calculated as 

the Polywog wavelet function of the anet
 as: 

)( aa netHh 
                                          ….. (3) 

2)(5.042 ))()(3()( anet

aaa enetnetnetH


     ….. (4) 
 

    Once the outputs of the hidden layer are 

calculated, they are passed to the output layer. In 

the output layer, one linear neuron is used to 

calculate the weighted sum (neto) of its inputs. 

b

nh

b

abab WbbiashWneto 
1                  ….. (5) 

 

where baW
 is the weight between the hidden 

neuron ah
 and the output neuron. Wb  is the 

weight vector for the output neuron. The one 

linear neuron, then, passes the sum (netob) 

through a linear function of slope 1 (another slope 

can be used to scale the output) as: 

 
)( bb netoLO 

                                        ….. (6) 
 

The output of the neural network is the modeling 

of the CSTR and can be defined as: 
)1( kCam . 

 

PSO Learning Algorithm  
 

     Particle Swarm optimization (PSO) is a kind of 

unsupervised algorithm to search for the best 

solution by simulating the movement and flocking 

of birds. PSO algorithms use a population of 

individual (called particles) “flies” over the 

solution space in search for the optimal solution. 

     Each particle has its own position and velocity 

to move around the search space. The particles are 

evaluated using a fitness function to see how 

close they are to the optimal solution [11]. 

The previous best value is called as pbest. Thus, 

pbest is related only to a particular particle. It also 

has another value called gbest, which is the best 

value of all the particles pbest in the swarm. 

The MLP neural network weight matrix is 

rewritten as an array to form a particle. Particles 

are then initialized randomly between 1.0  and 

updated afterwards according to equations (7 and 

8): 
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popi ,.....3,2,1  
Dm ,.....3,2,1  

Where  

pop is number of particles. 

D is the dimension of particle. 
k

miw , is the weight of particle i at k iteration. 

c1 and c2 are the acceleration constants with 

positive values equal to 1.25. 

r1 and r2 are random numbers between 0 and 1. 

ipbest
is best previous weight of i

th
 particle.   

mgbest
is best particle among all the particle in the 

population. 

The number of dimension in particle swarm 

optimization neural network is referring to 

number of weight and bias of the MLPNN 

structure and can be described as equation (9): 

Dimension = (input layer nodehidden layer 
output layer node) 

+ hidden bias +output bias                                                                

(9) 

The mean square error function is chosen as 

criterion for estimating the model performance as 

the objective cost function as equation (10): 

2

1
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m

j kCakCa
pop

E

                             
(10) 

The steps of PSO for learning MLP neural 

network can be described as follows:  

 Step1 Initial searching points 
0

1w
 and 

0

1w
 of each particle are usually 

generated randomly within the allowable 

range. Note that the dimension of search 

space consists of all the weights used in 

the MLP neural network, as shown in 

figure (2). The current searching point is 

set to pbest for each particle. The best-

evaluated value of pbest is set to gbest 

and the particle number with the best 

value is stored.  

 Step2 The objective function value is 

calculated for each particle. If the value 

is better than the current pbest of the 

particle, the pbest value is replaced by 

the current value. If the best value of 

pbest is better than the current gbest, 

gbest is replaced by the best value and 

the particle number with the best value is 

stored. 

 Step3 The current searching point of 

each particle is update by using 

equations (7 and 8).   

 Step4 If the current iteration number 

reaches the predetermined maximum 

iteration number, then exit. Otherwise, 

go to step 2.  
 

Results 
     The modeling and identifying are verified by 

means of computer simulation using Matlab m-

file program. 

The dynamic model of the CSTR described in 

section 2 is used. The objective is to model and 

identify the Ca(t) which can be done by 

introducing a coolant flow rate qc(t) as the 

manipulated variable, also the temperature can be 

varied too. To study the dynamic behavior of the 

CSTR model, the open loop output response of 
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the CSTR for step changes in the coolant flow-

rate are shown in figures (4-a & b) respectively. 
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Figure (4-a): The CSTR open loop respose. 
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Figure (4-b): The coolant flow-rate step 

changes 
     As shown both the damping and the steady-

state gain of the system varies considerably, 

depending on the set point, which gives an 

indication of the highly nonlinear dynamic 

behavior of the system.   

     The identification scheme of the nonlinear 

CSTR system is needed to input-output training 

data pattern to provide enough information about 

the dynamics CSTR model. This can be achieved 

by injecting a sufficiently rich input signal to 

excite all process modes of interest while ensuring 

that the training patterns adequately covers the 

specified operation region [12]. 

     The training set is generated by solving the 

CSTR equation (1) for the input a pseudo random 

binary signal (PRBS) using the fourth order 

Range-Kutta method with sampling time of 0.1 

minute. 

     It is very necessary to normalize the input 

signals of figure (5-a) and the desired output of 

figure (5-b) between (-1 to +1). The signals 

entered to or emitted from the network have been 

normalized to lie within (-1 to +1) in order to 

overcome numerical problems that is involved 

within real values. 

    Scaling functions have to be added at the neural 

network terminals to convert the scaled values to 

actual values and vice versa 
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Figure (5-a): The PRBS input signal used to 

excite the system. 
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Figure (5-b): The CSTR open loop response to 

the PRBS input signal. 
 

     The proposed learning algorithm based particle 

swarm optimization is used with the MLPNN of 

the structure (4-7-1) as four nodes in the input 

layer, seven nodes in hidden layer and one node 

in output layers, as shown in figure (2). 

     A training set of 200 patterns has been used 

with the size of the particle dimension is equal to 

43 by applying equation (9) and 20 particle 

numbers have been chosen. 

     Then using four steps of the proposed learning 

algorithm and after 100 iterations the mean square 

error has reached to less than 5×10
-5 

as shown in 

figure (6) with high speed of learning 
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Figure 6: The objective cost function MSE. 
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     Figure (7) shows the excellent learning for the 

CSTR neural model because it demonstrates the 

time response of the neural network model and 

the actual system output for the input learning set 

coolant flow-rate as well as reduces the output 

oscillation and minimizes the error between the 

actual output and neural network output. 
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Actual CSTR Response Neural Network Response

 
Figure 7: Neural network output and actual CSTR 

output for learning set 
 

     Figure (8) shows the verification of the CSTR 

neural network model which acts as a precious 

nonlinear dynamic behavior model, a coolant 

flow-rate testing set is used to feed the actual 

system and neural network model after that the 

responses of the actual system and neural model 

are obtained which showed high matching 

responses without any problems in the 

identification such as the over learning problem 

that its clear in [13]. 
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Actual CSTR Response Neural Network Response

 
Figure 8: Neural network output and actual CSTR 

output for testing set. 
 

Conclusions 
     This paper demonstrates the nonlinear CSTR 

neural model based on particle swarm 

optimization technique for learning the multi-

layer perceptron neural network with Polywog 

wavelet activation function. 

     Simulation results via Matlab package 

demonstrate the neural network approach acting 

as a dynamic precious nonlinear behavior model 

for the dynamic continuous stirred tank reactor 

based on PSO was batter than the results in [13] 

in terms of the following:  

 Increasing the speed of learning and 

minimizing the numbers of nodes in 

hidden layer. 

 Reducing the output oscillation and 

minimizing the error between the actual 

output and neural network output. 

 Overcoming the problem of the over 

learning in the identification system. 
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 نموذج لخزان مفاعل مستمر الإثارة مبني على أساس الشبكة العصبية الذكية
 

 أحمد صباح عبد الأمير الأعرجي
 

 الجامعة التكنولوجية -قسم هندسة السيطرة والنظم 

 

 

 :الخلاصة
 

باستخدام الشبكة  (CSTR) فاعل مستمر الإثارةأن هذا البحث يقدم خوارزمية التعريف لنموذج ديناميكي لخزان م     
. لقد تعلمت الشبكة العصبية التي تمثل النموذج الديناميكي لخزان مفاعل مستمر (MLPNNالعصبية متعددة الطبقات )

الإثارة باستخدام تقنية حشد الجسيمات الامثلية لسهولة و سرعة هذه الخوارزمية للتعلم. وتم استخدام دالة التنشيط 
(Polywong Wavelet.في الشبكة العصبية ) 

من   نتائج المحاكات لهذه الخوارزمية التعريفية كانت معقولة و مضبوطة من خلال استخدام الحقيبة البرمجية ماتلاب
 .(CSTR)مع أدنى عدد من الاستدعاء لداله التقييم لنموذج حيث سرعة واستقرارية 

  
 


