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Abstract

This paper presents the dynamic model
identification algorithm of the continuous stirred
tank reactor (CSTR) wusing a multi-layer
perceptron (MLP) neural network topology. The
neural network approach for (CSTR) dynamic
modeling is trained by using a particle swarm
optimization (PSO) technique as a simple and fast
training unsupervised algorithm. Polywog wavelet
activation function is used in the structure of MLP
neural network. The identification algorithm
given in this paper has been proved to be
reasonable and precise via Matlab simulation
results in terms of fast, stable and minimum
number of fitness evaluation for the CSTR
modeling.
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Introduction

In  control engineering, modeling and
identification are important steps in the design of
control, supervision and fault-detection system.
Simulation modeling provides an effective and
powerful approach for capturing and analyzing
complex manufacturing systems based on
computer generated data [1].

The problem of modeling of continuous stirred
tank reactor (CSTR) is always attracting task for
control system engineers because it's strong
nonlinear behavior. Models can be used for
simulations, analysis of the system's behavior,
better  understanding of the  underlying
mechanisms in the system, design of new
processes and for controlling systems [2].

There are different modeling approaches for
CSTR model as follows: Fuzzy clustering used
for modeling the CSTR through a combination of
local linear models as a means to capture global
dynamic characteristics of complex CSTR system
as explained in [2]. On-line identification is
proposed in [3] that consisted of a modified
growing and pruning algorithm for radial basis
function (MGAP-RBF) neural network which
used for affine modeling of nonlinear and time
varying CSTR system. Also, in the real time as
proposed in [4] a low cost embedded CSTR
system based on an inexpensive microcontroller
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using the full neural networks for training and
validation the system model using back
propagation learning algorithm.

In addition to that, an on-line recursive least
square identification method based on auto-
regressive exogenous input (ARX) was used to
have knowledge about dynamic behavior of
CSTR system as explained in [5].

The CSTR model was identified with Hopfield
network and it was relative degree, state variables
and lie derivatives can be obtained from the
identification network as a first order linear
system as proposed in [6].

The main advantages of the presented
approach are useful to build a precision nonlinear
model from measured data by using a PSO as a
simple steps proposed algorithm and fast the
weights training of the neural network model to
identify nonlinear systems accurately and to
overcome the most important learning problems.

CSTR Mathematical Model

Consider standard two-state (CSTR) with an
exothermic irreversible  first-order  reaction
A —> Btake place, the heat of reaction is removed
by a coolant medium that flows through a jacket
around the reactor, as shown in figure (1) [4 and
5].
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Figure 1: CSTR with cooling jacket [4,5].

The dynamics of system can be described by the
following two nonlinear ordinary differential
equations [7]:
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The nominal CSTR operating conditions can be
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shown in table (1).
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Table 1: Nominal CSTR operating

conditions [7]

. Nominal
Parameter Description Value
q Process flow-rate 100 Imin™
Inlet feed 1
Car concentration 1 mol |
Tt Feed temperature 350K
T Inlet coolant
of temperature 350K
Vol Reactor volume 1001
h Heat transfer 7*107 cal
2 coefficient mint.K*
K Reaction rate 7.2*10™ Min’
0 constant !
A Activation energy | 9.95*10° K
- 2*10° cal
AH Heat of reaction mol™
PP Liquid densities 1000 g I*
Cp Cpe Specific heats lcalgt K*
Qe Coolant flow-rate | 103.41 L. min™
Reactor
T temperature 440.2K
Product 8.36*102 mol
C, concentration It

Modeling Approach

To describe the dynamics model of (CSTR) by
using multi-layered feedforward neural network
(MLFNN), as shown in figure (2) which consist
of the nodes of input layer, hidden layer and
output layer as (4-7-1) respectively.

Input Layer i
F ¥ Hidden Layer 0 bias

W Cratput Lager
V.

bias

Figure 2: The MLFNN act as modeling [8].
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The input and output units interact with the
outside environment such as normalized and de-
normalized data inputs and outputs respectively,
while the hidden does not. The input units are
only buffer units which pass the signals without
changing them. The output unit is linear units [8].
The hidden units are non-linear Polywog wavelet
activation functions [9], as shown in figure (3).

Polyowg wavelet function output
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Figure 3: Polywog wavelet function

A multi-layer perceptron model is composed
of many interconnected processing units called
neurons or nodes, as shown in figure (2). The
network notations are as follows:

Va” : Weight matrix of the hidden layers.

Vba. Weight vector of the hidden layers.

Wea : Weight matrix of the output layer.

Wh : Weight vector of the output layer.
Where

n is equal to four.

a is equal to seven.

b is equal to one.

To explain these calculations, consider the
general a’th neuron in the hidden layer shown in
figure (2). The inputs to this neuron consist of an
n— dimensional vector and (n’th is the number of
the input nodes). Each of the inputs has a weight

V' associated with it. The first calculation within
the neuron consists of calculating the weighted
sum net, of the inputs as [8 and 10]:
nh - R
net, ="V, x Z, +hias xVb,
=1 .. (2)

where

nh is number of the hidden nodes and Z is the
input vector.
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Next the output of the neuron ha is calculated as

the Polywog wavelet function of the "t as:
-t e 3)
H (net,) = (3(net,)? —(net,))e >+

Once the outputs of the hidden layer are
calculated, they are passed to the output layer. In
the output layer, one linear neuron is used to
calculate the weighted sum (neto) of its inputs.

nh N
neto, = W,, x h, +bias xWhy
o= . (5)

W,

where “"va s the weight between the hidden

neuron ha and the output neuron. Wb s the
weight vector for the output neuron. The one
linear neuron, then, passes the sum (netoy)
through a linear function of slope 1 (another slope
can be used to scale the output) as:
O, = L(neto,) . (6)

The output of the neural network is the modeling

of the CSTR and can be defined as: Ca,, (k +1).
PSO Learning Algorithm

Particle Swarm optimization (PSO) is a kind of
unsupervised algorithm to search for the best
solution by simulating the movement and flocking
of birds. PSO algorithms use a population of
individual (called particles) “flies” over the
solution space in search for the optimal solution.

Each particle has its own position and velocity
to move around the search space. The particles are
evaluated using a fitness function to see how
close they are to the optimal solution [11].

The previous best value is called as pbest. Thus,
pbest is related only to a particular particle. It also
has another value called gbest, which is the best
value of all the particles pbest in the swarm.

The MLP neural network weight matrix is
rewritten as an array to form a particle. Particles

are then initialized randomly between $0.1 gng
updated afterwards according to equations (7 and
8):

AW = AW+ (pbestf, — W) +C,r, (gbesty, —w )

. (D
k+1 k k+1
Wim = Wi + AW, o (8)
1=123,.....pop
m=123,....D
Where

pop is number of particles.

D is the dimension of particle.
k

LM is the weight of particle i at k iteration.
¢, and c, are the acceleration constants with
positive values equal to 1.25.
r,; and r, are random numbers between 0 and 1.
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PDESt; i past previous weight of i particle.

goest,, is best particle among all the particle in the

population.

The number of dimension in particle swarm
optimization neural network is referring to
number of weight and bias of the MLPNN
structure and can be described as equation (9):
Dimension = (input layer node* hidden layer
nodel 1) + (hidden layer node X output layer node)
+ hidden bias +output bias
(9)

The mean square error function is chosen as
criterion for estimating the model performance as
the objective cost function as equation (10):

pop R .
E- p%Z(Ca(k 1)1 —Ca, (k+1))?

j=1
(10)
The steps of PSO for learning MLP neural

network can be described as follows:

0
Wl

e Stepl Initial searching points and

0

Aw, of each particle are usually
generated randomly within the allowable
range. Note that the dimension of search
space consists of all the weights used in
the MLP neural network, as shown in
figure (2). The current searching point is
set to pbest for each particle. The best-
evaluated value of pbest is set to gbest
and the particle number with the best
value is stored.

e Step2 The objective function value is
calculated for each particle. If the value
is better than the current pbest of the
particle, the pbest value is replaced by
the current value. If the best value of
pbest is better than the current gbest,
gbest is replaced by the best value and
the particle number with the best value is
stored.

e Step3 The current searching point of
each particle is wupdate by using
equations (7 and 8).

e Stepd If the current iteration number
reaches the predetermined maximum
iteration number, then exit. Otherwise,
go to step 2.

Results

The modeling and identifying are verified by
means of computer simulation using Matlab m-
file program.
The dynamic model of the CSTR described in
section 2 is used. The objective is to model and
identify the Ca(t) which can be done by
introducing a coolant flow rate qc(t) as the
manipulated variable, also the temperature can be
varied too. To study the dynamic behavior of the
CSTR model, the open loop output response of
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the CSTR for step changes in the coolant flow-
rate are shown in figures (4-a & b) respectively.
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Figure (4-a): The CSTR open loop respose.
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Figure (4-b): The coolant flow-rate step

changes

As shown both the damping and the steady-
state gain of the system varies considerably,
depending on the set point, which gives an
indication of the highly nonlinear dynamic
behavior of the system.

The identification scheme of the nonlinear
CSTR system is needed to input-output training
data pattern to provide enough information about
the dynamics CSTR model. This can be achieved
by injecting a sufficiently rich input signal to
excite all process modes of interest while ensuring
that the training patterns adequately covers the
specified operation region [12].

The training set is generated by solving the
CSTR equation (1) for the input a pseudo random
binary signal (PRBS) using the fourth order
Range-Kutta method with sampling time of 0.1
minute.

It is very necessary to normalize the input
signals of figure (5-a) and the desired output of
figure (5-b) between (-1 to +1). The signals
entered to or emitted from the network have been
normalized to lie within (-1 to +1) in order to
overcome numerical problems that is involved
within real values.

Scaling functions have to be added at the neural
network terminals to convert the scaled values to
actual values and vice versa
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Figure (5-a): The PRBS input signal used to
excite the system.
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Figure (5-b): The CSTR open loop response to
the PRBS input signal.

The proposed learning algorithm based particle
swarm optimization is used with the MLPNN of
the structure (4-7-1) as four nodes in the input
layer, seven nodes in hidden layer and one node
in output layers, as shown in figure (2).

A training set of 200 patterns has been used
with the size of the particle dimension is equal to
43 by applying equation (9) and 20 particle
numbers have been chosen.

Then using four steps of the proposed learning
algorithm and after 100 iterations the mean square
error has reached to less than 5x107 as shown in
figure (6) with high speed of learning
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Figure 6: The objective cost function MSE.
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Figure (7) shows the excellent learning for the
CSTR neural model because it demonstrates the
time response of the neural network model and
the actual system output for the input learning set
coolant flow-rate as well as reduces the output
oscillation and minimizes the error between the
actual output and neural network output.

0.12 .

T T T T T T
—Actual CSTR Response —=-Neural Network Response

/\WA\
|

0.11

o

N

N A
Vo b

J

20 40 60 80 100 120 140 160 180 200
Sample

Concetration (mol/l)
o o

= >

=]

1=
=Y
2

0.06

Figure 7: Neural network output and actual CSTR

output for learning set

Figure (8) shows the verification of the CSTR
neural network model which acts as a precious
nonlinear dynamic behavior model, a coolant
flow-rate testing set is used to feed the actual
system and neural network model after that the
responses of the actual system and neural model
are obtained which showed high matching
responses without any problems in the
identification such as the over learning problem
that its clear in [13].
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Figure 8: Neural network output and actual CSTR

output for testing set.

Conclusions
This paper demonstrates the nonlinear CSTR
neural model based on particle swarm

optimization technique for learning the multi-
layer perceptron neural network with Polywog
wavelet activation function.

Simulation results via Matlab package
demonstrate the neural network approach acting
as a dynamic precious nonlinear behavior model
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for the dynamic continuous stirred tank reactor
based on PSO was batter than the results in [13]
in terms of the following:

e Increasing the speed of learning and
minimizing the numbers of nodes in
hidden layer.

e Reducing the output oscillation and
minimizing the error between the actual
output and neural network output.

e Overcoming the problem of the over
learning in the identification system.
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